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Chen SC, Morley JW, Solomon SG. Spatial precision of popu-
lation activity in primate area MT. J Neurophysiol 114: 869—-878,
2015. First published June 3, 2015; doi:10.1152/jn.00152.2015.—The
middle temporal (MT) area is a cortical area integral to the “where”
pathway of primate visual processing, signaling the movement and
position of objects in the visual world. The receptive field of a single
MT neuron is sensitive to the direction of object motion but is too
large to signal precise spatial position. Here, we asked if the activity
of MT neurons could be combined to support the high spatial preci-
sion required in the where pathway. With the use of multielectrode
arrays, we recorded simultaneously neural activity at 24—65 sites in
area MT of anesthetized marmoset monkeys. We found that although
individual receptive fields span more than 5° of the visual field, the
combined population response can support fine spatial discriminations
(<<0.2°). This is because receptive fields at neighboring sites over-
lapped substantially, and changes in spatial position are therefore
projected onto neural activity in a large ensemble of neurons. This fine
spatial discrimination is supported primarily by neurons with recep-
tive fields flanking the target locations. Population performance is
degraded (by 13-22%) when correlations in neural activity are ig-
nored, further reflecting the contribution of population neural inter-
actions. Our results show that population signals can provide high
spatial precision despite large receptive fields, allowing area MT to
represent both the motion and the position of objects in the visual
world.

distributed coding; marmoset; multielectrode array; neural correla-
tions

PRIMATES, INCLUDING HUMANS, use vision to guide movements
(Dessing et al. 2013; Groh et al. 1997; Lisberger 2010). These
tasks require knowledge of both the position and motion of the
moving object, which are thought to be represented by a
“where” pathway in the primate visual system, a dorsal stream
of extrastriate cortical areas important in the analysis of space
(Goodale and Milner 1992). Whereas areas in the where
pathway, such as the middle temporal (MT) area, are better
known for their sensitivity to object motion, position and
motion are often perceptually intertwined (Burr and Thompson
2011) and may be encoded by the same populations of neurons.
Yet, spatial receptive-field size increases substantially at each
stage in the visual hierarchy, and receptive fields in extrastriate
areas can cover 100 times more visual field than those in the
primary visual cortex (V1) (Born and Bradley 2005; Britten
2003; Lennie 1998). The question we address here is the
following: how are the signals provided by these areas capable
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of supporting high spatial precision in the absence of small
receptive fields?

One hypothesis is that distributed encoding helps provide
sufficient spatial precision (Baldi and Heiligenberg 1988; Eu-
rich and Schwegler 1997; Hinton et al. 1986; Snippe and
Koenderink 1992). A distributed code uses small differences in
the activity of many neurons with wide but overlapping tuning
curves. For example, in the retina, three broadly tuned photo-
receptor classes support normal color vision, but humans and
other animals can discriminate many thousands of colors.
Similarly, neurons in the V1 area show wide- and overlapping-
orientation tuning curves, and discrimination of pattern orien-
tation is likely to rely on activity distributed across populations
of neurons (Graf et al. 2011). Psychophysical (Regan and
Beverley 1985) and theoretical work (Paradiso 1988; Pouget
and Thorpe 1991; Seung and Sompolinsky 1993; Shadlen et
al. 1996; Tzvetanov and Womelsdorf 2008) also suggest that
distributed codes are important in the representation of
visual features. Distributed codes are particularly useful
when multiple dimensions of the visual image, such as both
spatial position and object motion, need to be encoded in the
same population of neurons (Hinton et al. 1986; Monte-
murro and Panzeri 2006).

The wide receptive fields of neurons in extrastriate areas are
topographically organized (Sereno and Lehky 2011) and show
extensive spatial overlap, such that each position in the visual
field projects onto a large ensemble of neurons. Population
activity may therefore be able to support fine spatial discrim-
inations, but this has not been established. Here, we measure
population activity in area MT, a highly conserved area of
primate visual cortex. Area MT is a core component of the
dorsal where pathway and is important in the representation of
visual motion (Born and Bradley 2005; Britten 2003; Lennie
1998; Salzman and Newsome 1994; Solomon et al. 2011) and
control of movements (Dessing et al. 2013; Groh et al. 1997;
Lisberger 2010). In the marmoset monkey, extrastriate areas,
including area MT, lie exposed on the cortical surface (Solo-
mon and Rosa 2014; Solomon et al. 2014). We exploit this
accessibility to implant multielectrode arrays, which allowed
us to monitor populations of neurons working together to
represent an object moving through visual space. We establish
the precision with which population activity is able to track a
moving object and derive how spatial information is distributed
across individual neurons in the population. In addition, we
identify a rich and dynamic structure of interneuronal correla-
tions during object motion, which can provide a source of
information about spatial position.
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MATERIALS AND METHODS

Subjects and electrophysiological recordings. The surgical and
recording procedures have been detailed previously (McDonald et al.
2014; Solomon et al. 2014). All procedures were approved by the
University of Sydney Animal Ethics Committee and conform to
Australian National Health and Medical Research Council (NHMRC)
policies on the use of animals in neuroscience research. Adult male
marmosets (Callithrix jacchus, n = 3) were obtained from the
NHMRC combined breeding facility. The animal was initially sedated
with an intramuscular injection of 12 mg/kg Alfaxan (Jurox, New
South Wales, Australia) and 3 mg/kg Diazepam (Roche, New South
Wales, Australia). Postsurgical anesthesia was maintained by contin-
uous intravenous infusion of sufentanil citrate (4—12 pg-kg "h™";
Sufenta Forte; Janssen Cilag, Beerse, Belgium). The animal was
artificially ventilated with a 70:30 mix of N,O and Carbogen. Rectal
temperature was kept near 38°C with the use of a heating blanket.
Vital signs (ECG, EEG, SpO,, and rectal temperature) were moni-
tored continuously. Dominance of low frequencies (1-5 Hz) in the
EEG recording and absence of EEG changes under noxious stimulus
(tail pinch) were used as the chief sign of an adequate level of
anesthesia. At any sign of the reduced level of anesthesia, the dose of
sufentanil citrate was increased. To suppress eye movements, muscu-
lar paralysis was then induced and maintained by continuous infusion
of pancuronium bromide (0.3 mg-kg™'-h™'; AstraZaneca, New South
Wales, Australia). High-permeability contact lenses remained in place
for the duration of the experiment. No artificial pupils were used. At
the end of the experiment, the animal was euthanized with an
intravenous overdose of sodium pentobarbitone (500 mg/kg; Letha-
barb; Verbac Australia, New South Wales, Australia).

A craniotomy was made over area MT in the left hemisphere and
the dura reflected. Multichannel recordings were made with a 96-
channel array (Blackrock Microsystems, Salt Lake City, UT; 1.5 mm
length, 0.4 mm separation, average impedance 0.265 M()), band-pass
filtered (0.3-5 kHz), and sampled by a PZ2/RZ2 at 24 kHz (Tucker-
Davis Technologies, Alachua, FL). The array was inserted to a depth
of ~1 mm using a high-speed pneumatic device (Rousche and
Normann 1992). The electrodes generally extended into or past layer
4, and slight curvature of the cortex means that the depth of the
electrodes varies across the array. From the trajectory of receptive-
field positions on each electrode (Rosa and Elston 1998), we were able
to identify electrodes that were likely to be within area MT and others
likely to be in area MTc [a thin area bordering the anterior of area MT;
see Rosa and Elston (1998) and Solomon and Rosa (2014)]. For the
current analyses, we have included neurons from electrodes in both
areas.

Stimuli. Visual stimuli were generated by a Power Mac G4 com-
puter using custom software (EXPO; Peter Lennie, University of
Rochester, Rochester, NY) and presented on a cathode ray tube
monitor (Sony G500, 100 Hz refresh rate, width 40 cm, height 30 cm,
mean luminance 45-55 cd/m?), viewed directly at 45 cm. Supplemen-
tary lenses were used to focus the eyes, and the contralateral eye was
occluded during measurements. In one animal, we made an additional
measurement with the ipsilateral eye instead occluded. The primary
stimulus was a white disk of diameter 3° and intensity twice that of the
background, moving across a gray screen at 20°/s. The disk traveled
in a straight line along one of five paths, length 40°, at angular —18°,
—6°,0°, 6°, and 18° from the horizontal [throughout, we use the term
“degrees” (°) to refer to spatial separations on the monitor and
“angular degrees” (angular °) to refer to the angle of motion], and all
crossing at the center of the screen (see Fig. 1B). Both directions of
motion were sampled for each path; each direction of motion is
referred to as one trajectory. Each of the 10 trajectories was presented
80 times in pseudorandom order.

Multiunit spiking activity. Analyses were performed in MATLAB
(R2012a; MathWorks, Natick, MA). The function “findpeaks” was
used to identify waveforms with peak amplitude that exceeded 3 SD

of the raw signal. Multiunit spike count at each site was estimated in
nonoverlapping time bins of width 0.05 s or 0.01 s and transformed
into z-scores for subsequent analysis. z-Scores were calculated inde-
pendently for each electrode, using the mean and the SD of the binned
spike counts across all trials of all trajectories.

For explication in the following, we call the position and direction
of motion associated with each time bin a single “stimulus.” Not every
pair of stimulus positions fell within the spatial receptive fields of the
recorded population, and discrimination performance between these
pairs is difficult to interpret. To focus on the pairs of positions that
elicited response from the recorded population, we first calculated the
mean z-score across electrodes and trials at each stimulus position.
Pairs of positions were included for analysis if mean z-scores both
exceeded zero. When analyzing pairs of positions on different motion
trajectories, we included only pairs separated by >0.5°; this means
that the central point, where all trajectories cross, was excluded from
analysis.

Estimating spatial receptive fields. Response latency (90 ms) was
estimated as the delay that maximized the cross-correlation of each
recording site’s response to opposite directions of motion along the
same stimulus path, collapsed across recording sites and paths within
an animal. Spatial receptive fields for each trajectory were character-
ized by finding the best predictions of a one-dimensional Gaussian
model, with four parameters defining maximum response, center
position, SD, and maintained activity. Preferred motion direction of
each site was determined separately for each stimulus path. Some sites
obviously did not respond to the stimulus at any position along the
trajectory(ies) of interest, such that the peak amplitude of the Gaussian
that best predicted response did not reach significance (P < 0.05). Our
primary aim is to understand how receptive fields contribute to spatial
discrimination, and therefore, we excluded these sites from the anal-
yses. Counterpart analyses that nevertheless included these sites
generally resulted in poorer discrimination performance (not shown).

Support vector machine analysis. Linear support vector machines
(SVMs) (Graf et al. 2011; Joachims 1999; Vapnik 2000) were used to
quantify the discriminability of population activity for pairs of stimuli.
A leave-one-out cross-validation procedure was used: SVMs were
trained on population activity, measured over 79 trials of each stim-
ulus, and tested on the pair of left-out trials. The procedure was
repeated for the 80 unique pairs of left-out trials. Support weights
from each SVM (that is, for each pair of stimuli) were normalized to
a unit vector and then averaged across the 80 cross-validated datasets.
In each case, performance was estimated as d-prime (d")

100-HIT+1) , (100-1HIT+1)
- | —normnv{ ————————

d = norminv(
102 102
with the (100° k + 1)/102 adjustment to assign large, noninfinite
values when the hit rate or false-alarm rate was O or 100%, and
“norminv” is the inverse normal function with a mean of 0 and SD of
1. SVMs that were instead trained with 10 or 20 trials left out for
cross-validation showed d' performance and distribution of support
weights that were consistent with that obtained in the leave-one-out
approach (not shown), suggesting that the SVMs are identifying
robust patterns of activity across the relevant populations.

To assess discrimination performance of a single site and randomly
drawn subpopulations of 2, 5, 10, or 20 sites, we repeated the SVM
analyses above. In each case, 80 randomly selected subpopulations of
responsive sites were drawn and d’ performance calculated. In further
analyses, a Gaussian weighting function (SD 6° of the visual field),
centered on the discrimination target, was used to bias the subpopu-
lation toward the locality of the target position; 80 weighted subpopu-
lations of 10 sites were drawn and the SVM analyses repeated. Linear
regression was used to compare performance for weighted and ran-
domly selected subpopulations of the same size.

Compensation for cortical footprint. The decoder performance
depended on the fraction of the population recruited at each stimulus
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position. Two positions that are by larger sets of neurons or neurons
with better signal to noise are inherently more discriminable than
others. We used a general linear model (GLM), assuming normally
distributed error, to estimate the variability in performance that could
be attributed to stimulus position. Effectively, the GLM estimates
d'posy and d' pos;

d’ (POS1,POS2) = d'pos; + d'posz + d’ %))

yielding residuals 3’, representing position-independent performance.

The position-independent performance was further modeled with
an elliptical surface [parameters: A, r, spatial-direction ratio (SDR),
and d',], with respect to separation in the stimulus position (APOS)
and motion direction (ADIR)

. 1 (APOS? ) .
d =A. expl| — ﬁ W+ADIR -1 +d0 (3)

from which we extract the SDR. SDR characterizes the difference in
spatial position that is required to achieve the decoding performance
observed for motion directions that are an angular 1° apart. Finally,

the offset value 3’0 was removed so that the final “estimated d'” (see
Fig. 6, C and D) is zero when both positional and directional
separation are zero.

In additional analyses, we asked if the discrimination surface could
be better explained by alternative descriptive models. Linear, separa-
ble functions in APOS and ADIR failed to follow the elliptical
contours in the data. Multiplicative, separable functions produced
similar SDR values (~1.2X greater than the inseparable model used
in the main analyses) but showed larger fitting error at small values of
APOS and ADIR.

Influence of noise correlations on decoding performance. To assess
whether the performance of the SVM was dependent on having access
to the structure of interneuronal correlations, we repeated the analyses
above but after shuffling the order of the trials in the training dataset.
As above, the decoder was cross-validated on “raw” trials that were
left out of the training dataset; that is, the decoder is tested on actual
brain activity, but training on shuffled data makes it incapable of using
any correlations that may exist in the real dataset. Changes in the
performance of the shuffled decoder therefore reflect the contribution
of the information in the structure of interneuronal correlations to
subsequent computations.

We recognized that there is a simple relationship between the
performance from SVMs trained on the raw data (correlation-aware)
and SVMs trained on shuffled data (correlation-blind) decoders. By
definition, d’ measures the ratio between the difference of the mean
responses to the SD of the noise. Since shuffling the training data does
not change mean response, the impact of shuffling on d' must be
related to changes in SD of the noise in the population that is
introduced by shuffling. The ratio of the d' between the decoders can
therefore be characterized by a simple gain/loss factor (G)

“

|
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This allows us to use linear regression to characterize the change in
performance (G) when using different decoders. In the relevant
analyses (see Fig. 4), we used only d' values <3.5 in the regression
to avoid ceiling effects of near-perfect discrimination.

Pearson’s correlation coefficient was calculated for all possible
pairing of responsive sites. To factor out site-by-site variations in
correlation magnitude, GLMs were used to estimate the correlations
(p) not attributable to the pairs of electrodes (MU1 and MU2) under
consideration (applied as seen in Fig. 5)

p(MUL,MU2) = 5 + pyu1 + pvun S

Selective correlation masking. We used synthetic data to investi-
gate how decoding performance depends on noise correlations be-
tween pairs of electrode sites whose receptive fields are at different
locations with respect to the stimulus. For each electrode, the position
of each stimulus was expressed as distance from its receptive-field
center in multiples of the SD of its receptive field. These normalized
positions were then binned in five partitions (negative numbers imply
the position is earlier in the trajectory than the receptive-field center):
less than —1.5 SD; —1.5 to —0.5; —0.5 to 0.5; 0.5-1.5; >1.5.
Responses of each pair of electrodes were collated for each pair of
normalized positions. This created 25 datasets; for example, in one
dataset, we have the responses of pairs of neurons, where one of the
receptive fields is centered on the stimulus (—0.5 to 0.5 SD), and one
is far ahead of the stimulus (>1.5 SD).

We calculated the correlation matrix for these datasets and then
created two synthetic datasets (1,280 trials each), in which we pre-
served mean rate at each recording site but either retained or modified
the covariances. We used MATLAB’s multivariate normal random
number generator “mvnrnd” to generate the synthetic datasets, pro-
viding it with the mean activity for each electrode site and the
preserved or modified covariance matrix. In the modified set, we
halved (rather than removed) the covariances and used the nearest
“symmetric-positive definite” matrix to minimize side effects that can
arise when altering the covariance matrix. SVMs were trained on the
real datasets and tested on the two synthetic datasets; performance
gain for each dataset was calculated as in Eq. 4.

RESULTS

In the following, we characterize the precision of spatial
representations in area MT by recording from populations of
neurons with planar multielectrode arrays implanted into three
anesthetized marmosets; each implant yielded between 24 and
65 responsive sites for analysis. The arrays covered a large
fraction of area MT, such that the underlying receptive fields
occupied a wide swathe of the visual field (Fig. 14). As
expected, the receptive fields in area MT were retinotopically
organized and highly overlapping (Born and Bradley 2005;
Britten 2003; Rosa and Elston 1998). To understand how
populations of motion-sensitive neurons might represent spa-
tial position, we analyzed multiunit activity evoked by a single
moving object (diameter 3°) that traveled smoothly across the
visual field at moderate speed (20°/s; Fig. 1B). We analyzed
four sessions obtained in three animals; in one animal, we had
sufficient time to reposition the monitor and obtain a second
recording.

The receptive fields of neurons in area MT are large, and the
consequence is that neurons respond to a wide range of spatial
positions (Fig. 1C). Receptive-field diameter (full width at half
height) increased with eccentricity from a mean of 6.3° (£3.7
SD) in the parafoveal half of the stimulus trajectory to 11.7°
(*4.6 SD) in the more peripheral half of the stimulus trajec-
tory. Individual neurons will therefore be poorly capable of
detecting small changes in position. By contrast, as an object
moves across the screen, it evokes reliable responses in many
neurons at each spatial position, and the moving object there-
fore creates a moving “hill” of activity in the MT population
response. This distributed response is a potentially rich source
of information for fine position judgements.

Spatial precision of area MT population response. To char-
acterize the spatial precision of population responses in area
MT, we used linear SVMs, which allow us to estimate empir-
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Fig. 1. Population response to a moving stimulus in the middle A

SPATIAL PRECISION IN AREA MT

temporal area (MT). A: receptive fields of neurons in area MT are
large and highly overlapping. Estimated receptive-field center (dots)
and extent (shaded regions; 1 SD) for multiunit activity obtained
with a 10 X 10 electrode array implanted into area MT in the left
hemisphere of 1 animal. Estimated position of the fovea is marked
with “F.” For clarity, the extent of a subset of receptive fields is
illustrated. Color of receptive fields specifies position in the record-

Medial G . .
= > Responsive electrode sites
g Left — Right Right — Left
—F— %
%
A\
————— N ——

ing array. B: the stimulus was a disc moving across the screen.
Response was obtained to both directions of movement, along each B

of 5 paths arranged around the horizontal axis. C: average response
at each recording site to a disc moving along the horizontal axis
from left to right (leff) and from right to left (right). Note the x-axis
on the right is flipped to preserve the true temporal order of neural
response. Electrode sites were arranged by the preferred stimulus
position. Electrode position in the recording array is identified by the

color of the dots between panels. One recording site is highlighted
by the thick lines in both left and right and illustrates the directional
sensitivity of neural responses in area MT.

ically the discriminability of population response at two spatial
positions without requiring assumptions about the correlation
structure of population responses or how they might be used to
discriminate changes in spatial position. Here, we trained the
SVMs to discriminate a change in the spatial position of the
moving object along a single trajectory of motion (Fig. 2A).
For each pair of spatial positions, we trained a new set of
SVMs, using a “leave-one-out” cross-validation approach to
establish how well the population response could be discrim-
inated on a single trial. We obtained similar results in each of
the four recordings and therefore, pooled across them.
Application of the SVM showed that population response
was capable of fine spatial precision on individual trials, with
robust performance for both small and large changes in the

A B C

Stimulus 1°discrimination
o> 5 l 5
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v : |4 5| [
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o ' Best ind. i/? Avg
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= Stimulus separation (deg) # Sites
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Fig. 2. Area MT population response allows fine spatial discriminations along
the trajectory of motion. A: schematic representation of the decoding task.
Neural response at each electrode was binned according to stimulus position.
For each pair of stimulus positions along a single trajectory, the d-prime (d")
discrimination performance was calculated. B: population response supports
fine spatial discriminations; discrimination performance along the same tra-
jectory. Triangles and line show performance with the full population (2465
sites, depending on experiment). Circles and line show the average perfor-
mance of individual recording sites (Avg ind.). Squares and line show perfor-
mance of the optimal individual recording site for each spatial discrimination
(Best ind.). Data were pooled across all experiments and all well-represented
stimulus positions (n = 316, 308, 301, and 282 pairs, respectively, for 1°, 2°,
4°, and 8° spatial separation). Error bars represent 1 SD and for clarity, are
shown on 1 side. Gray, dashed line shows average population performance for
1° spatial separation, extended to C. C: dependence of performance on
population size. Each line shows performance for discrimination of 1° spatial
separation. In each case, 80 randomly selected subpopulations (n = 5, 10, or
20) of responsive sites were analyzed and then collapsed across experiments.
Circles and line show average performance across all randomly selected
subpopulations. Squares and line show the best performing subpopulation.
Conventions are the same as B.
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spatial position of the moving object (Fig. 2B). For a 1° change
in object position, average d' was 2.2 (£0.1 SE); that is, an
unbiased observer, forced to choose between the two positions,
would be correct on 86% of trials. Performance increased with
spatial separation, and in all cases, the precision of population
response exceeded that of the best individual site. To assess
how performance depended on population size, we repeated
the analysis, drawing on randomly sampled subpopulations
(Fig. 2C). Performance increased with the number of sites
included, and the performance of the 10 best sites approached
that of an entire population of 24—65 sites.

The analyses above used a response window of 0.05 s, which
parsed a trajectory into bins of 1°. To assess performance over
finer spatial separations, we repeated the analyses with a
response window of 0.01 s, thereby parsing the trajectories into
bins of 0.2°. The smaller bin size naturally reduces spike count
and in addition, may change covariances among neurons in the
population, both of which may impair discrimination perfor-
mance. Indeed, discrimination performance for spatial separa-
tions of 1° was impaired when using the narrower time win-
dows to an average d' of 1.5 (77% correct). Performance
nevertheless remained above chance (d' = 0) for spatial
separations of 0.2° (d' = 0.35 £ 0.01, SE; 57% correct) and
0.4° (d" = 0.74 *+ 0.01, SE; 64% correct).

Neuronal contributions to a distributed code. How are the
responses of neurons used to discriminate between alterna-
tive spatial positions? To address this question, we revisited
the SVMs trained to discriminate pairs of positions (using
time bins of 0.05 s) along a single motion trajectory and
analyzed the weights that the SVMs applied to different
recordings sites. The organization of our analyses means that
the SVMs assign positive weights to neural activity that sup-
ports the hypothesis that the stimulus is at the target position
and negative weights to neural activity that supports the hy-
pothesis that the stimulus is at an earlier position in the
trajectory, which can be 1°, 2°, 4°, or 8°. The SVMs give
stronger weight to neurons that are more informative about the
decision boundary, and the question here is how the weights
relate to the spatial tuning of the underlying neurons.

We first investigated the coding strategy for fine position
discriminations. Inspection of individual sites suggested that
neurons were more likely to be informative when the peak of
the receptive field was offset from the targets, such that the
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positions to be discriminated lay on one of the flanks (Fig. 3A).
To represent the distribution of weights across the population
of neurons, we aligned the position of each stimulus to each
tuning curve and expressed stimulus position in units of that
tuning curve’s width. Projection of SVM weights into the same
space (Fig. 3B) confirms that neurons are more likely to be
informative when their receptive field was offset from the
discrimination. By contrast, large position differences—spatial
separations larger than the size of receptive fields—activated
largely separate populations of neurons, and neurons were
more likely to be informative if one of the targets was near the
center of the tuning curve (Fig. 3B). Analyses over a range of
target separations showed smooth transition in the distribution
of weights between the two coding schemes (not shown).
Given open access to population response, fine position
discrimination was primarily supported by those neurons with
receptive fields within 2 SD (~6°) of the discrimination locus
(Fig. 3B). This suggests that downstream areas may be able to
recover spatial position with limited pooling over area MT
output. To establish if limited pooling would be sufficient, we
constructed SVMs where the probability of being included in
the SVM was set by the centroid of the receptive field relative
to the target positions. Specifically, subpopulations of 10 neu-
rons were drawn from the population with probability given by
a Gaussian distribution over visual space (SD 6°) and centered

A B

Stimulus 1° position separation

0.4
Site1 v
0+ -\A-.
Site2 A
04 -

8’ position separation

ROy

Site3 0.4
v
] w—
A
0 20 40

Stimulus position (deg) 0.4 -
—
4 0 4

Average response
——— 1° position separation weights

Stimulus position
(sd from peak response)

Fig. 3. Neural activity supporting fine and coarse spatial discrimination. A:
spatial response and support vector machine (SVM) weight profiles for
individual sites. Gray lines show the spatial profile of receptive fields at each
of 3 simultaneously recorded sites. Insets show the size of each receptive field,
in units of the SD of a Gaussian fit to the spatial profile. Black lines show the
weights applied by the SVM to each site during discrimination of positions,
separated by 1° of the visual field, at each point along the trajectory. B: profile
of SVM weights is different for discrimination of small (1°, fop) and large (8°,
bottom) differences in spatial position. Population average weights (black
lines), plotted for stimuli moving in the preferred direction (n = 973). Weights
are plotted as a function of the position of the stimulus within the aligned and
scaled receptive fields (in SD of a Gaussian fit to each site’s spatial profile).
Positive weights indicate that neural activity provided evidence that the
stimulus was at that position; negative weights indicate that neural activity
provided evidence that the stimulus was at the comparison position. Triangles
indicate the maxima and minima of the average SVM weights. As a reference,
the correspondingly scaled spatial response (gray lines) is plotted in the
background (in arbitrary y-axis units). Lightly shaded regions show 1 SD
around the mean.

on the target positions. Discrimination performance of these
localized subpopulations was, on average, 89% [*+3%, 95%
confidence interval (CI)] that of the random subpopulations
shown in Fig. 2C. The reduction in performance implies that
neurons farther away from the discrimination locus may pro-
vide useful signals, particularly when they have high signal to
noise, and is consistent with the very large receptive fields of
neurons in area MT. The high performance of the localized
SVMs suggests that the spatial precision of population re-
sponse can be “read out” with limited spatial pooling of its
signals.

Impact of interneuronal correlations on fine spatial discri-
minations. Receptive fields of neurons in area MT are highly
overlapping and are therefore likely to receive input from
overlapping sets of neurons. Neurons in area MT are therefore
unlikely to provide independent analyses of the retinal image—
some of their activity will be shared with other neurons (Bair
et al. 2001; Cohen and Kohn 2011; Cohen and Newsome 2008;
Huang and Lisberger 2009; Solomon et al. 2014). These
interneuronal correlations will impose motifs on area MT
population response that might be important for its targets and
be used by our decoding machines.

To assess whether the SVMs had identified population
motifs, we further trained SVMs on artificial datasets, where
the patterns of neural correlations were destroyed by shuffling
the order of trials in each recording site. Shuffling allowed us
to test an alternate decoding framework, where the brain is
blind to its interneuronal correlations. We therefore refer to this
set of SVMs as “correlation-blind” SVMs and the original set
as “correlation-aware” SVMs. We cross validated the perfor-
mance of the correlation-blind SVMs on real data to establish
how those decoders interpret real neural activity. If the corre-
lation-blind decoders showed the same performance as the
correlation-aware decoders, then this would imply that the
structure of interneuronal correlations is not useful for spatial
discriminations.

The removal of correlations from the training set did not
change the pattern of weights that the SVM attributed to
individual sites (not shown). We used linear regression to
estimate the change in decoder performance (G; Eq. 4) that is
brought about by removing correlations from the training set.
This analysis showed that removing correlations substantially
reduced performance, by 13-22% (Fig. 4B). This provides
evidence for the presence of reproducible population motifs in
the spiking activity. The performance reduction was more
pronounced for fine discriminations (1° separation: 22 = 2%,
95% CI; Fig. 4C) than coarse discriminations (8° separation:
13 = 3%), implying that population motifs are most useful
when two stimuli elicit similar population responses.

To understand the structure of these motifs, we calculated
the correlation in spike counts (“noise correlations” over time-
scales of 0.05 s) between pairs of recording sites, using
Pearson’s correlation coefficient. Preliminary analyses indi-
cated that individual recording sites could show consistently
higher or lower levels of correlation with other sites: individual
sites contributed 9.5-23.7% of the variance in correlation
estimates in each recording. This may reflect differences in the
number of neurons contributing to multiunit activity at each
site (Cohen and Kohn 2011). To compensate for the overall
differences in correlation at individual sites, we removed them
(see Eq. 5). The resulting, adjusted correlation coefficients are
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Fig. 4. Population correlations are important for optimal decoding. A: two
decoders were considered: the correlation-aware decoder was trained on the
empirical data distribution containing noise correlation, and the correlation-
blind decoder was trained on trial-shuffled data with the noise correlation
destroyed. Data were pooled across animals for stimulus positions that were
well represented by the underlying populations (n = 3,739 pairs of stimuli).
Shaded regions show 1 SD around the mean. Relative performance of the
correlation-blind decoder is the fractional change in performance across the
stimuli under consideration. B: relative performance of the correlation-blind
decoder as a function of spatial separation, collapsed across spatial separation
(same trajectory: n = 257, 179, 119, and 65 pairs, respectively, for 1°, 2°, 4°,
and 8°; cross-trajectory separation was rounded to the nearest integer: n = 546,
610, 540, 393, 329, 261, 197, and 82, respectively, for 1-8°). C: relative
performance of the correlation-blind decoder as a function of direction sepa-
ration, collapsed across directional separation (n = 620, 902, 998, 625, 361,
216, and 17 pairs, respectively, for 0°, 6°, 12°, 18°, 24°, 36°, and 180°). Error
bars show 95% confidence interval from regression analysis for B and C.
To avoid ceiling effects, in B and C, we include only data points in which
d < 3.5.

plotted as a function of the object’s position within the tuning
curve of each site (Fig. 5C). As the object moves across the
visual field, it traverses the receptive field of each neuron, and
Fig. 5C shows that the magnitude of correlations depends on
where the object is within each receptive field.

The population motifs that emerge in Fig. 5C are rich in
structure, but they appear to be driven by two rules. The first
rule is that correlation is highest in neurons that are near each
other and therefore, have similar receptive fields (Huang and
Lisberger 2009; Smith and Kohn 2008; Solomon et al. 2014);
this provides a diagonal structure in the matrix (Fig. SA). The
second rule is that correlation depends on response amplitude.
This provides a cross structure in the matrix (Fig. 5B). The

shape of this cross arises from the inter-relationship of two
factors: correlation increases with response amplitude when the
stimulus is within the receptive fields of both neurons (Church-
land et al. 2010; Gutnisky and Dragoi 2008; Kohn and Smith
2005), and correlation is also high when the stimulus is absent
from both receptive fields (Smith and Kohn 2008). The result
is that correlation is relatively low when the stimulus is within
one receptive field but not the other, and this is what forms the
centered vertical and horizontal bands of low correlation in the
matrix.

We would like to know which aspects of the motifs in Fig.
5C might be exploited in decoding, but we cannot isolate them
in real spiking activity. We therefore simulated population
response using the original measurements of response ampli-
tude and the correlation matrix in Fig. 5C to generate distri-
butions of synthetic spiking activity. Selective attenuation of
parts of the correlation matrix (Fig. 5D) allowed us to generate
new distributions of spiking activity. We used changes in the
performance of the SVM, implemented as above, to assess the
importance of those correlations. The attenuation of all corre-
lations reduced discrimination performance by, on average,
10% (£0.4%, 95% CI), similar to the reduction in performance
that is brought about by shuffling training data above. Selective
attenuation of parts of the correlation matrix revealed that this
overall reduction in performance arises because the SVMs
particularly rely on pairs of neurons in which the object lies on
opposite flanks of the receptive field. In these pairs, changes in
object position bring about an increase in spiking activity at
one site and a decrease at the other, whereas interneuronal
correlations either increase or decrease activity in both neu-
rons. In these pairs, therefore, noise correlations distribute
response along dimensions that are not aligned with the
changes in response that are brought about by object motion.
By contrast, the attenuation of correlations among neurons
with similar receptive fields improved performance (Fig. SE).
This is because interneuronal correlations and changes in
object position both increase or decrease activity in both
neurons.

Comparison of spatial and direction discrimination. We
established a benchmark for our estimates of spatial precision
by measuring discrimination performance for pairs of positions
along different motion trajectories (Fig. 6A4). Each combination
of position and motion direction has a different cortical foot-
print. That is, each position in visual space is sampled differ-
ently—both in terms of the number of electrode sites that are
active at each position of the moving object in visual space and
the signal to noise at those electrode sites. Combinations of
positions that project onto larger ensembles of neurons or
neurons with better signals are inherently more discriminable.
To assess its impact, we created a surrogate measure of cortical
footprint for each pair of positions: the average of z-scored
spike rates across all recording sites and all trials at the two
positions. This measure was a strong predictor of the d’
performance (not shown): as average z-score increased from
—0.1 to 0.1, discrimination increased by 1.8 d’ units.

To establish how discrimination depends on spatial and
direction separation, we need to establish the variation in
performance that does not reflect variation in cortical footprint.
We therefore estimated the impact of the cortical footprint by
incorporating the actual positions of the two stimuli as predic-
tors of discrimination performance in a GLM (see MATERIALS
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Fig. 5. Structure of neural correlations depends on stimulus position. The structure of pairwise spike count correlations (“noise correlations”) from different
perspectives. Data represent all pairs of responsive sites where the stimulus was moving in the preferred direction of both sites (n = 967,980). Receptive field
(RF) positions are expressed in SD of a Gaussian fit to each site’s spatial-response profile. Stimulus positions preceding the receptive-field center are indicated
as negative values and vice versa for stimulus positions after passing through the receptive-field center. Shading of bar in C applies to A—C. A: noise correlation
is higher for pairs of receptive fields with greater overlap. Left: average noise correlations collapsed across stimulus positions as a function of the distance between
receptive fields (ARF), normalized by the geometric mean of their SD. Right: the correlation structure on the /eft can be projected into a joint space, defined by
the position of a stimulus within 2 receptive fields (RF1 and RF2). The shading of the image indicates the strength of noise correlation that is predicted by the
data on the left. B, left: noise correlation as a function of the response rate of each neuron. Average noise correlations were collapsed across stimulus positions.
Right: the spiking rate was mapped to receptive-field positions using the average spatial response profile and the result projected onto the joint space, defined
by the position of a stimulus within 2 receptive fields. The shading of the image indicates the strength of noise correlation that is predicted by the data on the
left. C: joint space defined by the position of a stimulus within 2 receptive fields (RF1 and RF2). The shading of the image indicates the strength of noise
correlation measured at each stimulus position. The rich structure is similar to that predicted by the combination of A and B. D: population activity was simulated
multiple times using multivariate, normal distributions. In each simulation, the mean activity of neurons was that measured, and the correlation matrix was
preserved everywhere except within 1 partition, where the correlation coefficient was halved. E: impact of decorrelation on spatial discrimination depends on
the masked partition. Shading indicates the relative impact of decorrelation on capacity to discriminate 1° change in stimulus position: darker shades indicate

where attenuating correlations reduced performance and lighter shades, where attenuating correlations improved performance.

AND METHODS). Individual stimulus positions accounted for a
substantial fraction of the variance in discrimination perfor-
mance: this fraction ranged from 63.2% to 90.1% in the
different recordings. We then subtracted out the position-
dependent components, leaving a measure of relative perfor-

mance (3'0), which we used for further analysis and is inde-

pendent of the cortical footprint. Indeed, d’, showed no de-
pendence on average z-score (not shown).

Discrimination performance increased with spatial and di-
rectional separation and saturated at large separations along
either dimension (Fig. 6B). The joint surface can be well
described by elliptical contours with an exponential gradient
(¥ = 0.53), and the axes of this ellipse characterize the relative
impact of spatial and direction separation on discrimination
performance (Fig. 6C). To quantify performance, we calcu-
lated the ratio of the ellipses’ length along the axis of spatial
separation to that along the axis of direction separation. This
index, which we call the SDR, was 0.056 (£0.001, 95% CI).
This ratio implies that if area MT could support discrimination
of an angular 2° difference in the motion direction of full-field
dot patterns (Hol and Treue 2001; Purushothaman and Bradley
2005) and smooth pursuit targets (Osborne et al. 2007), then it
should also be able to support discrimination of a 0.11°
difference in visual space position.

To determine the impact of retinal eccentricity on discrim-
ination performance, we conducted the same analysis on the
parafoveal and peripheral halves of the stimulus trajectories:
estimated discrimination resolution for the two halves was,
respectively, 0.10° and 0.14° (SDR of 0.049 = 0.002 and 0.071 *=
0.009, 95% ClI, respectively). The reduced resolution in pe-
riphery reflects an increase in average receptive-field size from
of 6.3° to 11.7°. In a separate recording from the same animals,
we estimated the directional tuning of multiunit activity for a

field of moving dots (McDonald et al. 2014). Full-width,
half-maximum directional tuning bandwidth was an angular
130° (=54 SD) and was similar for neurons with parafoveal
and peripheral receptive fields (P = 0.10, #-test); a commonly
used index of directional selectivity (1 — resp,,/resppr) in
the same recordings was 0.81 (+0.34 SD). These are compa-
rable with that reported for single-unit activity in area MT of
macaque and marmoset, in which tuning bandwidth is angular
100-120°, and the direction selectivity index is 0.85—1.0 (Brit-
ten 2003; Solomon et al. 2011).

In the analyses above, we excluded spatial discriminations
for pairs of positions that lay on the same trajectory as a
safeguard against effects arising from temporal correlations
between these data points. We asked if the model could predict
discrimination performance for these pairs of positions. We
first factored out the impact of the cortical footprint (position-
dependent performance) using the footprint that we estimated
from the pairs of positions on different trajectories. The mo-
del’s predicted discrimination performance for positions on the
same trajectory is very similar to that observed (Fig. 6D), with
slight overestimation for small spatial separations.

DISCUSSION

Visually guided behavior requires precise knowledge of both
the position and motion of objects. The size of receptive fields
of neurons in extrastriate areas of visual cortex, including area
MT, means that individual neurons have limited capacity to
signal the position of objects. By measuring the response of
populations of these neurons, we have shown that the popula-
tion signals of these areas allow high spatial precision and that
these signals are accessible to simple decoders. Even our
relatively small populations of neurons in area MT showed
above-chance performance for targets separated by 0.2° of the
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Fig. 6. Comparison of discrimination performance for space and motion
direction. A: schematic of the analysis. Population discrimination performance
was measured for 2 stimuli (STIM1 and STIM2) from different motion
trajectories. Each pair of stimuli is classified by the difference in spatial
position (APOS; analyses were confined to spatial separation of up to 8°) and
the difference in motion direction (ADIR; between 6° and 36° angular
difference). B: population discrimination performance depends on separation
in space and motion direction. Performance estimates were corrected for biases
arising from differences in the number of sites responsive at each spatial
position. Only stimulus positions that were well represented in the population
are included; data pooled across experiments (n = 9,824 pairs of stimuli). C:
descriptive model of discrimination performance for space and motion direc-
tion. Left: “birds-eye” view of data in B; image shading represents mean
discrimination performance. Right: descriptive model of the data on the left: an
exponential incline of elliptical contours. 7> indicates the goodness of fit. D:
performance for spatial separations along the same motion trajectory. Discrim-
ination performance along the same motion trajectory was corrected for biases
arising from differences in the number of sites responsive at each spatial
position (symbols). The dotted line shows predictions of the descriptive model,
obtained using the separate measurements described in B and C for ADIR =
0°. Error bars show SD across spatial positions.

visual field, and we inferred by comparison with capacity to
discriminate motion direction that population acuity will be in
the order of 0.1°. As a reference, the spatial acuity of marmoset
reaches 30 cycles/degree (Ordy and Samorajski 1968), sug-
gesting that although activity in area MT is unlikely to match
the maximal acuity of activity in retina and area V1, it can
provide a spatial representation with behaviorally relevant
acuity. Yet, our estimates of spatial precision are difficult to
relate to extant measurements of behavioral acuity, which can
use form and motion signals, as well as positional signals
(Morgan and Benton 1989; Verdon-Roe et al. 2006; Wes-
theimer 1987), and are likely to be task dependent.

Discrimination of fine differences in orientation and motion
direction is thought to rely on populations of neurons with
broad tuning curves along the relevant dimension in the V1
[e.g., Graf et al. (2011)] or area MT [e.g., Purushothaman and
Bradley (2005)]. Our analyses invoke a similar population
representation of spatial position. Despite wide tuning curves
for motion direction and spatial position, the same population
of neurons is capable of fine discrimination of motion direction
and spatial position (cf. Fig. 6), suggesting that area MT can
represent the position, as well as the motion of objects, in the
visual world. The breadth of spatial and direction tuning curves
of neurons in area MT may, in part, reflect compromises that
arise when populations of neurons need to encode more than
one dimension of the visual image (Hinton et al. 1986; Mon-
temurro and Panzeri 2006).

Population coding of spatial position. Visual cortical areas
are defined by the presence of a retinotopic map, but this
inherent representation does not imply that the analysis of
visual space is fundamentally different to the analysis of other
features of objects and surfaces. The presence of retinotopic
maps has driven the local sign hypothesis [e.g., Whitney and
Bressler (2007)], whereby an object’s position is assigned to
the peak of activity in a retinotopic map. Our results are not in
conflict with this hypothesis but place the analysis of space in
the same framework as the analysis of derived visual features,
such as form and motion. For coarse discriminations—spatial
separations larger than the size of receptive fields—the most
useful neurons are those with receptive fields centered on each
position. For fine spatial discriminations, however, neurons
with receptive fields centered on the spatial positions are less
useful than those whose receptive fields flank the judgement.
This is consistent with the distribution of likelihood (Graf et al.
2011; Jazayeri and Movshon 2006) or Fisher information
(Tzvetanov and Womelsdorf 2008) across the neural popula-
tion. Similar “flank-encoding” representations have been im-
plicated in the discrimination of other visual features: spatial
frequency (Bradley et al. 1987), orientation (Beaudot and
Mullen 2006; Graf et al. 2011; Paradiso 1988; Pouget and
Thorpe 1991), and motion direction (McDonald et al. 2014;
Purushothaman and Bradley 2005; Seung and Sompolinsky
1993; Tzvetanov and Womelsdorf 2008).

The presence of robust visuotopic maps throughout visual
cortex makes it difficult to dissect the contribution of each area
to behavior, and many tasks may simply rely on the very fine
scale representations that are provided by area V1. In macaque,
microstimulation of area MT biases the end point of saccades
(Groh et al. 1997), although the contribution of position, rather
than velocity, signals remains unclear. In human perceptual
work, flank encoding is best revealed during adaptation. Ad-
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aptation has its greatest impact on capacity to discriminate
changes in pattern orientation, spatial frequency, or motion
direction when the adapting stimulus is offset from the dis-
crimination locus in the relevant dimension (Hol and Treue
2001; Regan and Beverley 1983, 1985; Tzvetanov and Wom-
elsdorf 2008). By analogy, our observations predict that many
aspects of spatial discrimination will be poorer during adapta-
tion to displaced positions than during adaptation to overlap-
ping positions. The most potent displacement should depend
on the scale of the receptive fields engaged in the task, and this
may help constrain which cortical regions are engaged in
different forms of spatial vision.

Knowledge of noise correlations improves discrimination.
Our analyses show that moving objects impose a rich pattern of
interneuronal correlations, which may be useful for spatial
discriminations. Because a small moving object moves into
and out of individual receptive fields, the structure of correla-
tions is richer than that previously revealed during visual
stimulation with large surfaces, which always cover the recep-
tive fields of the neurons under study [e.g., Bair et al. (2001),
Cohen and Kohn (2011), Rosa and Elston (1998), Smith and
Kohn (2008), and Solomon et al. (2014)]. We were able to
reveal this structure because we made measurements from
large populations of neurons simultaneously: measurements
from pairs of neurons would only provide single slices through
the matrix in Fig. 5C. This rich structure emerges from simple
principles. First, interneuronal correlations in the absence of a
visual stimulus are likely to reflect intrinsic rhythms of cortical
networks (Smith and Kohn 2008; Vidne et al. 2012), and
introduction of a stimulus reduces the impact of these rhythms
in neurons whose receptive fields cover the stimulus position
(Churchland et al. 2010; Gutnisky and Dragoi 2008; Kohn and
Smith 2005). Second, the presence of a stimulus brings neurons
away from spike threshold and allows more of the shared
membrane-potential fluctuations to be visible in spiking activ-
ity (Cohen and Kohn 2011)—spike correlations are stronger
when the stimulus is within the receptive fields of the relevant
neurons. Third, neurons with similar receptive fields, those
close together in the cortical sheet, show stronger correlations
[e.g., McDonald et al. (2014) and Smith and Kohn (2008)].

How interneuronal correlations affect population perfor-
mance will depend on the functional properties of the relevant
neurons. The most important neurons in fine spatial discrimi-
nations are those whose receptive fields flank the discrimina-
tion locus (cf. Fig. 3). In pairs of similarly tuned neurons,
where the object lies on the same flank of the receptive field,
noise correlations increase overlap in firing rates evoked by
each of the two positions and impair neural performance. By
contrast, where the object lies on opposing flanks of receptive
fields, noise correlations can reduce overlap in responses to
two positions and can thereby improve neural performance.
This is because the change in stimulus position brings about
opposite changes in mean response. Thus interneuronal corre-
lations can help or hinder neural computations, as implied by
theoretical work (Averbeck et al. 2006; Averbeck and Lee
2006; Cohen and Kohn 2011; Latham and Nirenberg 2005;
Nirenberg and Latham 2003; Romo et al. 2003; Sompolinsky
et al. 2001). Our observations further suggest that these differ-
ent impacts of noise correlations do not “cancel out” when
considered across populations of neurons. When we imple-
mented decoders that ignored correlations, performance dropped by

13-22%, consistent with other work (Graf et al. 2011; Pillow
et al. 2008). The performance loss is especially acute in fine
spatial discriminations, where two stimuli elicit similar popu-
lation responses.

Our observations predict that in spatial discrimination tasks
that rely on the activity of similarly tuned neurons, reduced
noise correlations should be associated with increased behav-
ioral performance (Fig. 5C). This is in agreement with previous
work that shows that attention-related improvements in a
change-detection task are associated with reduction in correla-
tions between neurons, in which the visual change generally
increased mean firing rate (Cohen and Maunsell 2009). For
tasks that instead rely on neurons with opposite changes in
mean response, our observations predict that improvements in
performance may be associated with increased neural correla-
tions. This is in agreement with recent work that shows that
attention-dependent improvements in a contrast-discrimination
task can be associated with increased noise correlations be-
tween neurons that provide evidence for opposite choices (Ruff
and Cohen 2014).
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