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Solomon SG, Tailby C, Cheong SK, Camp AJ. Linear and nonlinear
contributions to the visual sensitivity of neurons in primate lateral
geniculate nucleus. J Neurophysiol 104: 18841898, 2010. First pub-
lished August 4, 2010; doi:10.1152/jn.01118.2009. Several parallel
pathways convey retinal signals to the visual cortex of primates. The
signals of the parvocellular (P) and magnocellular (M) pathways are
well characterized; the properties of other rarely encountered cell
types are distinctive in many ways, but it is not clear that they can
provide signals with the same fidelity. Here we study this by charac-
terizing the temporal receptive field of neurons in the lateral genicu-
late nucleus of anesthetized marmosets. For each neuron, we mea-
sured the response to a flickering uniform field, and, from this,
estimated the linear and nonlinear receptive fields using spike-trig-
gered average (STA) and spike-triggered covariance (STC) analyses.
As expected the response of most P-cells was dominated by the STA,
but the response of most M-cells required additional nonlinear com-
ponents, and these usually acted to suppress cell responses. The STC
analysis showed stronger suppressive axes in suppressed-by-contrast
cells, and both suppressive and excitatory axes in ON-OFF cells.
Together, the STA and the STC analyses form a model of the temporal
response to a large uniform field: under this model, the information
that was provided by suppressed-by-contrast cells or oN-OFF cells
approached that provided by the P- and M-cells. However, whereas P-
and M-cells provided more information about luminance, the nonlin-
ear cells provided more information about the contrast energy. This
suggests that the nonlinear cells provide complimentary signals to
those of P- and M-cells, with reasonably high fidelity, and may play
an important role in normal visual processing.

INTRODUCTION

Most ganglion cells in the primate retina and its major target,
the dorsal lateral geniculate nucleus of the thalamus (LGN),
belong to the parvocellular (P) or magnocellular (M) pathway
(Leventhal et al. 1981). All P- and M-cells show receptive
fields of the center-surround type and can be reasonably well
characterized by linear models (Benardete and Kaplan 1997a,b,
1999; Derrington and Lennie 1984): each neuron responds as if
it computes a weighted sum of the intensity of the pattern
imaged on its receptive field. Deviations from linearity are
most clearly evident in M-cells, all of which exhibit contrast
gain controls (Benardete et al. 1992; Kaplan and Shapley 1986;
Solomon et al. 2002) and some of which show more severe
nonlinearities (Crook et al. 2008b; Kaplan and Shapley 1982;
Petrusca et al. 2007; Solomon et al. 2006). Despite these
functional differences, the responses of P- and M-cells to
achromatic images often appear redundant (Levitt et al. 2001;
van Hateren et al. 2002).

Address for reprint requests and other correspondence: S. Solomon, Ander-
son Stuart Bldg., F13, Univ. of Sydney, Sydney, NSW 2006, Australia (E-mail:
samuels @physiol.usyd.edu.au).

1884

0022-3077/10 Copyright © 2010 The American Physiological Society

Although most studies of primate retina and LGN focus on the
work done by the P- and M-pathways, other ganglion cell types
project to the LGN (Dacey et al. 2003; Rodieck and Watanabe
1993; Szmajda et al. 2008) and therefore might have direct access
to conscious visual sensation. Some of these neurons receive
substantial input from S-cones and have predominantly linear
receptive fields that seem suited to conveying chromatic informa-
tion (Crook et al. 2009; Derrington et al. 1984; Lankheet et al.
1998). Other rarely but consistently encountered cell types re-
spond to the retinal image in a fundamentally nonlinear manner
(Casagrande 1994; de Monasterio 1978; White et al. 2001).
Recent work has characterized the discharge of some of these cells
to sinusoidal modulation (Crook et al. 2008a; Petrusca et al. 2007,
Tailby et al. 2007) and shows important differences between the
receptive fields of these cells and those of the P- and M-pathways.
These nonlinear cells probably form part of the koniocellular
pathway (Casagrande 1994; White et al. 2001), which in turn is
often identified with the sluggish W-pathway of the cat visual
system, whose label suggests a pathway of low fidelity. However,
it remains unclear whether the information about the stimulus that
these cells provide is comparable to that provided by the P- and
M-pathways or how their nonlinear signals complement that of P-
and M-cells.

Spike-triggered covariance (STC) analyses have recently
shown important aspects of nonlinear processing in visual cortex
(Chen et al. 2007; Horwitz et al. 2005; Rust et al. 2005; Touryan
et al. 2002), but we know much less about what may be already
present in the subcortical cells that provide their input, especially
in primates. STC analysis showed nonlinearities in an unidentified
cell in the macaque retina (Pillow and Simoncelli 2006); two
similar analyses in the LGN of macaque are suggestive: although
one found few nonlinearities in the (multiunit) response of the
blue-yellow pathway (Horwitz et al. 2005), another found non-
linear mechanisms in both M- and P-cells (Sincich et al. 2009). In
the retina of salamanders, STC analysis has shown several distinct
classes of receptive field (Fairhall et al. 2006). Using STC anal-
yses, we establish here that there are strong nonlinearities in the
temporal receptive fields of linear cells (particularly those in the
M-pathway) and the very nonlinear cells. The nonlinearities mod-
ulate the sensitivity of M-cells and P-cells; in the very nonlinear
cells, they endow a code for contrast energy, a very different
signal to those provided by P- and M-cells.

METHODS

Surgery

Experiments were undertaken as part of a larger series on eight
adult male common marmosets (Callithrix jacchus jacchus), weighing
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between 350 and 430 g. All procedures conformed to the guidelines
approved by Animal Ethics Committee of the University of Sydney.
Each animal was initially sedated with an intramuscular injection of
12 mg/kg Alfaxan (Jurox) and 3 mg/kg Diazepam (Roche). We gave
preoperative intramuscular injections of 0.2 mg/kg atropine (Pfizer) to
reduce lung secretions and dexamethasone (0.3 mg/kg; Maine Phar-
maceuticals) to reduce inflammation. Subsequent surgery was per-
formed under supplemental local anesthesia (Lignocaine 2%; Astra
Zaneca). A femoral vein was cannulated, the trachea was exposed, and
an endotracheal tube was inserted. The head was placed in a stereo-
taxic frame, and a craniotomy was made over the LGN.

Postsurgical anesthesia was maintained by continuous intravenous
infusion of sufentanil citrate (4—12 ug/kg/h, Sufenta Forte, Janssen
Cilag) in physiological solution (sodium lactate, Baxter International)
with added dexamethasone (0.4 mg/kg/h; Mayne Pharma) and Syn-
thamin 17 (225 mg/kg/h, Baxter International). The ECG and EEG
were monitored continuously. Muscular paralysis was induced and
maintained by continuous infusion of pancuronium bromide (0.3
mg/kg/h; Astra Zaneca). The animal was artificially ventilated so as to
keep end-tidal CO, near 33 mmHg. At any sign of the anesthesia
becoming less effective, the dose of sufentanil citrate was increased.
Rectal temperature was kept near 38°C with the use of a heating
blanket. Additional antibiotic and anti-inflammatory cover was given
daily by intramuscular injection of 25 mg Noricillin (Norbrook), and
0.1 mg dexamethasone. The pupils were dilated with atropine sulfate,
and the corneas were protected with high-permeability contact lenses
that remained in place for the duration of the experiment. No artificial
pupils were used. Supplementary lenses (with power determined by
maximizing the spatial resolution of parvocellular cells) were used to
focus the eyes at a distance of 114 cm.

A small incision was made in the dura, and a guide tube containing
the electrodes was inserted and positioned above the LGN (most
measurements were obtained with single electrode recordings: para-
lyene-coated tungsten, FHC, 9—-12 MOhm; 3 nonlinear cells were
identified in a larger set of tetrode recordings: Thomas Recordings
tetrodes, 2-5 MOhm). At the end of the experiment, the monkey was
killed with intravenous 500 mg/kg sodium pentobarbitone (Lethobarb,
Verbac Australia).

Visual stimuli and recording

A front-silvered mirror was used to bring the receptive field onto
the center of a cathode ray tube monitor (ViewSonic G810, 100 Hz
refresh rate; or Sony G520, refresh rate 120 or 120.4 Hz), viewed
from 114 cm. Visual stimuli were generated by a G5 Power
Macintosh computer using custom software (EXPO; P. Lennie);
they were drawn with 8-bit resolution using commands to OpenGL.
For each phosphor, we determined the relationship between the
output of the video card and the photopic luminance; the inverse of
this relationship was applied to the image that was sent to the video
card. The stimulus was a drifting sinusoidal grating or a uniform
field modulated in time; all stimuli modulated around the mean
luminance (45-55 cd/m?) and were presented within a circular
window with hard edges (diameter 8° unless otherwise specified),
outside of which the screen (20 X 15°) was held at the mean
luminance. The output of the three monitor phosphors could be
adjusted to produce modulations of specific cone photoreceptors,
using knowledge of the spectral radiance distribution of the mon-
itor phosphors, the peak sensitivity of marmoset cone photorecep-
tors, and the spectral absorption characteristics of the optic media
and macular pigment (Blessing et al. 2004; Tailby et al. 2008b). In
most experiments, the full calibration was used; in three, we did
not have the full spectral distribution of the monitor phosphors and
therefore we used conversion matrices that were derived from
previous calibrations. The responses to S cone modulation of M-
and P-cells encountered in all animals were nevertheless very
small, encouraging us to believe that we substantially isolated the
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signals of the S cone from those of the LM cone. The S cone-
isolating stimulus produced 60—80% contrast in S cones and <5%
contrast in LM class cones. The LM cone—isolating stimulus pro-
duced >60% contrast in LM class cones and <5% contrast in S
cones. The receptive fields of all cells were located within 15° of
the fovea. The analogue signals from the electrodes were ampli-
fied, filtered, and sampled at 48 kHz by the same computer that
generated the visual stimulus. Putative spikes were displayed on a
monitor, and templates for discriminating spikes were constructed
by analyzing multiple traces. The timing of waveforms that co-
hered to the template was recorded with an accuracy of 0.1 ms.
Off-line analysis was performed using Matlab (MathWorks,
Natick, MA).

Cell identification

For each cell, we determined the sign of response (ON, OFF) to
achromatic and cone-isolating modulation of spatially uniform fields
and the tuning for temporal frequency, spatial frequency, and contrast
using drifting achromatic gratings. Along with the pattern of transi-
tions between eye representations and in some cases subsequent
histological reconstructions, these measures were used to classify
most cells as part of the P- or M-pathway (Derrington and Lennie
1984; Dreher et al. 1976; White et al. 2001). We encountered several
types of cells that could not be functionally defined as P- or M-cells,
including the very nonlinear suppressed-by-contrast cells and ON-OFF
cells described here.

During presentation of drifting gratings, the response of both
suppressed-by-contrast and oN-OFF cell types is best characterized by
changes in the mean rate. Figure 1, C and D, shows for oN-OFF and
suppressed-by-contrast cells how the mean rate and the modulated
rate (at the stimulus frequency) depend on the spatial frequency of the
drifting grating. For the oN-OFF cell, spatial frequencies up to ~3
cycles/® increase the mean rate and produce a smaller modulated
component. The high maintained discharge of the suppressed-by-
contrast cell was reduced over a similar range of frequencies, and at
very low spatial frequencies, the gratings also modulated the dis-
charge (see Tailby et al. 2007 for very similar tuning functions
obtained from LGN of macaque). Figure 1, E and F, shows that the
characteristic changes in mean rate for these types of cells are
apparent over a range of temporal frequencies.

Spike-triggered average and STC

The primary visual stimulus used here was a uniform field whose
luminance was updated at the refresh rate of the monitor and drawn
from a Gaussian distribution with zero mean and an SD of 0.3 (where
1 is a full increment from the background and —1 is a full decrement).
To determine the temporal properties of mechanisms that contributed
to the response of cells, we estimated the average (STA) and covari-
ance (STC) of the spike-triggered stimulus ensemble (Brenner et al.
2000; de Ruyter van Steveninck and Bialek 1988; Schwartz et al.
20006).

The luminance of each frame was stored and rearranged into a
series of stimulus vectors, s, one for each frame in the sequence. The
column vector s, where s, is the luminance on frame ¢, extends 50
frames into the past. The occurrence of each spike was found, and
these spikes were binned into a vector r with the same temporal
resolution as the stimulus sequence and aligned so that the time
covered by the bin corresponded to the last frame in each vector s.

The spike-triggered stimulus ensemble is the matrix of vectors s
that was associated with a nonzero bin in r; each vector s was
weighted by the number of spikes in the associated time bin of r. The
STA is the average of this weighted stimulus ensemble
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FIG. 1. Identification of ON-OFF and suppressed-by-contrast receptive fields
in marmoset lateral geniculate nucleus. A, C, E: ON-OFF cell. B, D,
F: suppressed-by-contrast cell. A, B: peristimulus time histograms (PSTHs) of
the discharge rate during presentation of a large uniform field whose luminance
was modulated in time by a 0.5 Hz square wave. Also shown is the maintained
discharge rate, calculated in the same way, but for a blank screen held at the
mean luminance. C, D: responses of the same cells to drifting sinusoidal
gratings of varying spatial frequency (temporal frequency 5 Hz). The open
symbols show the mean discharge rate; the closed symbols show the amplitude
of modulation at the temporal frequency of the grating; and the dashed lines
show the maintained discharge rate. E, F: the response of the same cells to
gratings of varying temporal frequency (spatial frequency 0.8 and 2 cycles/°,
respectively). Conventions as in C. Michelson contrast in all cases 1.0. Error
bars are = SE.

1 IV
STA=—> r; Xs; (1)
mi=1

where m is the total number of spikes and N is the number of vectors
in the spike-triggered stimulus ensemble. STA can be considered an
estimate of the linear temporal receptive field. To quantify the vari-
ability associated with this estimate (as in Fig. 2), we divided the
stimuli and responses into 10 segments of equal length and performed
the analysis separately on each segment. To estimate the varibility in
the STA, we estimated the signal-to-noise (SNR) ratio of the segment
STAs. The SNR was defined as ratio of the amplitude of the average
waveform (the STA) to twice the SD of its noise

_ max(STA) — min(STA)
2 X SD(STA,)

2

where STAe is the difference between the average STA and the 10
segment STAs, across all segments and all time points (to concentrate
this measure on the relevant time period we used only the 20 frames
before a spike).

We wanted to know whether other aspects of the stimulus sequence
determined the spiking response of the cell under study, and here we
projected STA out of the stimulus ensemble [The reader should note
that this is not always done in this type of analysis (Fairhall et al.
2006)]. First we made a unit vector of STA, A’
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We then projected A out of the spike-triggered stimulus ensemble ()
to make a new ensemble S

S=5-SATA 4)

where 7 denotes matrix transpose. This ensures that the axes of the
STC will be orthogonal to STA. Finally we calculated the covariance
of this ensemble

s7s
C=— )
m

and decomposed the covariance matrix C to obtain eigenvalues and
their associated eigenvectors.

This analysis aims to find axes in the stimulus space along which
the variance is smaller or larger than expected of a spherical Gaussian
distribution; that is, the axes along which the neuron is more respon-
sive or less responsive than expected. To place confidence intervals,
we repeated the process 1,000 times, each iteration shifting the times
of the action potentials relative to the stimulus by a random value
constrained to exceed 1 s.

Information captured by the model

To examine the relationship between projection of the stimulus on
STA and discharge rate, we first normalized STA to unit variance, then
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FIG. 2. Temporal receptive fields of lateral geniculate nucleus of the thalamus
(LGN) neurons provided by spike-triggered average (STA). A: parvocellular (P)
cell. B: magnocellular (M) cell. C: suppressed-by-contrast cell. D: ON-OFF cell. The
stimulus was a large field, whose luminance was randomly drawn from a Gaussian
distribution on every screen refresh. The curves show the weighted average
luminance in each frame preceding each action potential, the STA. The thick lines
show the STA calculated from the entire stimulus; the thin lines show the STA
calculated from each of 10 segments of the stimulus. For clarity, only the 20
stimulus frames before each spike are shown (200 ms in C and 160 ms elsewhere).
The horizontal dashed lines show the mean luminance; upward excursions show
when the average luminance was higher than the background. Error bars (usually
too small to see) are =SE.
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determined the projection of every stimulus (both those that led to a
discharge and those that did not) onto the normalized STA, and finally
sorted the projections into 40 equally spaced bins that spanned the
observed range. The information captured by STA or each eigenvector
can be estimated by making two probability distributions: P(v), the
probability that the projection v of any stimulus was found in each bin,
and P(vispike), the probability that a stimulus that led to a spike was
found in the same bins (in each case the sum of the probability
distribution is unity). The information, /, in bits per spike, is

P(vilspik
(v spi e):| ©)
P(v)

N
1= 2 P(vilspike) X logz[
i=1
where N is the number of bins and i is the index to that bin (Adelman
et al. 2003; Aguera y Arcas and Fairhall 2003; Fairhall et al. 2006;
Sharpee et al. 2004; Sincich et al. 2009). The estimate of / carries an
upward bias: to estimate that bias, we repeated the analysis for the
eigenvector associated with the most insignificant eigenvalue. The /
returned by this analysis was small but not zero (for large fields: w
0.023, SD 0.031; n = 63). The values of I reported and used
throughout are the difference between this “noise I”” and that provided
by the relevant vector, calculated independently for each neuron.

To characterize the interaction between the STA and an eigenvec-
tor, or two eigenvectors, we estimated the information in their joint
probability distribution (Fairhall et al. 2006). This is provided by
substituting the appropriate joint probability distributions for P(v) and
P(vlIspike) in Eq. 6. The information in the joint distribution also
carries bias, and to estimate that, we performed the calculation for the
STA and most insignificant eigenvector. For each cell, we defined the
bias as the difference in the information provided by this joint
distribution and that provided by the STA alone: the bias is larger than
for the single vectors above because there are fewer observations in
each bin; on average, it was 0.077 (SD = 0.100, n = 63). The
information in the joint distribution reported here is the difference
between the measured information and this estimate of bias.

Descriptive function for the relationship between STA and
the discharge rate

To characterize the input—output function of the STA, we again
binned the projections of every stimulus onto the STA. We calculated
the average spike rate (in impulses/s) of the stimuli associated with
each bin. We fit a cumulative normal distribution (Chichilnisky 2001),
with free parameters defining the mean and SD of the distribution and
another providing an overall scale factor. Most of the stimuli have
projections of near-zero amplitude, so different bins have different
numbers of observations. In fitting the cumulative normal, we wanted
to give less weight to those bins that had less reliable observations.
Our time bins were small enough (8—10 ms) that there was usually
only one or zero impulses in them, so we made the simplifying
assumption that there was only ever one or no impulses (whereby a
sample from a Poisson distribution can be approximated by binary

random draw)
PX(1—P) 1
SD = + 7)
N 2XN

where P is the probability of an impulse associated with the projec-
tions falling in the relevant bin, and N is the number of trials
contributing to that estimate. Our fitting procedure (Isgnonlin in the
Matlab environment) used this value to normalize the square error
between the prediction of the cumulative normal and the observed
firing rate, so bins associated with less reliable observations contrib-
uted relatively less to the overall fit.
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Decoding trains of impulses to recover luminance and
energy

A complementary analysis is that of “decoding,” where we try to
reconstruct the stimulus given the observed action potentials. We used
standard methods of optimal linear decoding, described in detail
elsewhere (Warland et al. 1997). Briefly, we divided the stimulus
sequence into 11 equally long blocks. We used 10 of these blocks
(30,462 frames) to train a decoder, which recovered the filters (which
resemble but are not usually identical to the STA) that minimized the
squared difference between the observed and predicted stimuli. To
estimate how well these filters had done, we used them to predict the
sequence of luminance in the 11th block (3,046 frames). We repeated
this process for each of the 11 blocks, always training the decoder on
the remaining frames. To characterize the performance, we divided
the predicted and actual sequences into windows of 100 frames for
Fourier analysis. The frequency spectrum of the predicted sequence,
x(w), is the signal provided by the neuron, and the frequency spectrum
of the error between the predicted and actual sequences, r(w), is the
noise associated with that signal. The signal-to-noise ratio was esti-
mated, at each temporal frequency from the fundamental to the
Nyquist limit, from the ratio of signal power to noise power at that
frequency, logSNR = log,[1 + x(w)*/r(w)*]. To summarize this, we
integrated the signal-to-noise ratio across the frequency range, which
is an estimate of the mutual information between the actual and
predicted sequences of luminance, I,

1 N
1= > 10gSNR(w) 8
w=1

where N is the highest harmonic measurable (here, the 50th). In a
parallel set of analyses, the stimulus sequences were first squared, and
from this, we recovered the mutual information between the predicted
and observed contrasts. Despite their inaccuracies, we refer to analysis
of the raw sequence as luminance decoding and of the squared
sequences as energy decoding. These estimates are biased because the
sequence is of finite length, and therefore for each cell, we performed
the same estimates after shifting the trains of impulses by 3,046
frames. This preserves the structure of the impulse trains and the
stimulus but not the relationship between the two. The estimates of
signal-to-noise ratio and mutual information for single cell reconstruc-
tions that are shown in Fig. 10 are the differences between that
obtained for real and shifted trains of impulses.

RESULTS

In the following, we describe measurements from 28 P-cells
(16 on, 12 orF) and 11 M-cells (7 oN, 4 oFF) in three adult
marmosets. From these and another five animals, we also made
measurements from nine suppressed-by-contrast cells and four
oN-oFF cells. These cells were readily distinguished from the
oN- and ofr-subtypes of P- and M-cells by their discharge
during presentation of a uniform field whose luminance mod-
ulated in time. The oN-oOFF cell has a low maintained discharge
rate, which increases in response to both light increments and
light decrements (Fig. 1A). The suppressed-by-contrast cell
(Rodieck 1967) or uniformity detector (Cleland and Levick
1974) has a high maintained discharge rate, which is sup-
pressed by both light increments and decrements (Fig. 1B). The
marmosets that were studied here were all male and thus all
dichromatic, having one cone photoreceptor sensitive to short
wavelengths (the S cone) and another sensitive to the long and
medium wavelengths (an LM cone). The receptive fields of P-
and M-cells studied here showed very weak or no response to
modulation of the S cone; we characterized four additional
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neurons that had distinctive blue-oN receptive fields with clear
excitatory responses to increments in S cone activity. In seven
of eight suppressed-by-contrast cells and three on-oFfF cells
where appropriate measurements were made, the discharge
was also sensitive to modulation of the S cone. We will return
to this in DISCUSSION.

Linear contributions to temporal receptive fields in LGN

For each cell, activity was measured during presentation of
a large uniform field (usually 8° in diameter), the luminance of
which was chosen from a Gaussian distribution and updated
every 8 or 10 ms (the rate at which the monitor was refreshed).
From the responses to the flickering field, we obtained the
average and covariance of the stimuli that preceded spikes
(where each stimulus was considered to be the 50 frames
before each spike). The STA characterizes the linear behavior
of receptive fields, whereas the STC helps characterize the
nonlinear behavior (de Ruyter van Steveninck and Bialek
1988; Fairhall et al. 2006; Rust et al. 2005; Schwartz et al.
2006).

The thick lines in Fig. 2, A-D, shows the STA for four
example neurons. The STA of the on-center P- and M-cells are
biphasic and resemble those described previously in macaque
(Benardete and Kaplan 1997a, 1999). Their shapes imply that
the cells will be more likely to generate action potentials when
the image on its receptive field changes rapidly from dark to
light. The analysis also returned STAs in the nonlinear cells:
these are more complicated and generally carry more lobes
than those of P- and M-cells. This suggests that the linear
component of the temporal receptive field might be limited to
very specific temporal sequences and perhaps only a limited
range of temporal frequencies. To establish the robustness of
the STA, we divided the stimulus and response sets into 10
equal segments and calculated an STA for each of those
segments. The thin lines in Fig. 2, which show the STA
obtained from each of these shorter segments, are all close to
that obtained from the entire dataset, shown by the thick line,
suggesting that the STA reflects mechanisms within the tem-
poral receptive field that are stable over time. This was the case
for all neurons in our dataset; to quantify the variability across
the population of cells, we calculated a signal-to-noise ratio for
the segment STAs by comparing them to the STA obtained
from the entire dataset (Eq. 2, METHODS). For the neurons in Fig.
2, A-D, these were, respectively, 7.1, 6.1, 6.7, and 6.3. Across
all P-cells, they were on average 6.3 (SD 1.9, n = 28), across
M-cells, they were 8.3 (SD 3.6, n = 11), across suppressed-
by-contrast cells, they were 4.7 (SD 2.1, n = 9), across ON-OFF
cells, they were 9.2 (SD 9.2, n = 4), and across blue-on cells,
they were 7.3 (SD 3.2, n = 4).

Nonlinear contributions to receptive fields in LGN

The STA shows the average temporal pattern of luminance
that is associated with a spike. It will therefore fail to capture
elements of a receptive field that responds equivalently to
increments and decrements. STC analysis can overcome this
by finding axes in the spike-triggered stimulus space that are
conspicuously elongated or constricted.

Figure 3, A—D, shows the result of the STC analyses on the
neurons in Fig. 2 (see METHODS). Briefly, we project the STA
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FIG. 3. Temporal receptive fields of LGN neurons provided by spike-
triggered covariance (STC). A: P cell. B: M cell. C: suppressed-by-contrast
cell. D: oN-OFF cell. Same cells as in Fig. 2. The stimulus was a large uniform
field modulated in time. Filled symbols in middle panels show the eigenvalues
returned by the analysis, sorted by their eigenvalue. Dashed lines show 99%
confidence limits on these values obtained by 1,000 bootstrap resamples of the
discharge; eigenvalues that lie outside the bounded region are unlikely to have
arisen by chance. Left: the temporal profile of the eigenvectors associated with
each of the 2 largest eigenvalues (that for the largest eigenvalue is shown at
top). Right: the temporal profile of the eigenvectors associated with the 2
smallest eigenvalues (that for the lowest eigenvalue is shown at bottom). Thick
lines show eigenvectors that are associated with significant eigenvalues.

out of the spike-triggered stimulus ensemble and identify axes
in the resultant ensemble that have significantly large or small
variance. The STC analysis returns eigenvalues (which reflect
the variance along the axes) and their associated eigenvectors
(which reflect the stimulus structure along those axes). We
sorted the eigenvalues and these are plotted in the middle
panels of Fig. 3.

Figure 3 also shows the eigenvectors associated with the
four most extreme eigenvalues: in the left panels are the two
vectors with maximal values (the top one has the largest
eigenvalue); and in the right panels are the two with minimal
values (the bottom one has the smallest eigenvalue). To deter-
mine which eigenvectors reflected significant directions in the
spike-triggered stimulus ensemble, we repeated the analysis
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1,000 times, but each time shifted the spike train relative to the
stimulus by a random amount, thereby destroying the relation-
ship between the two (see MeTHODS). The dashed lines in the
middle plot show the 99% confidence limits on the eigenvalues
returned from these bootstraps; eigenvalues outside of this
region represent significant deviations from the expected vari-
ance, and the eigenvectors that correspond to them are shown
by thicker lines in the panels on the left and right.

As expected from their generally linear behavior, none of the
eigenvalues recovered for the example P-cell were significant,
and it is clear that their associated eigenvectors lack obvious
structure. For the example M-cell, an eigenvalue “pops-off” the
bottom, lying below the lower bound of the confidence limit of
the distribution. This corresponds to an axis of unexpectedly
low variance within the spike-triggered ensemble, indicating
that stimuli that project onto this axis are associated with a
reduced probability of spiking: suppression. In the suppressed-
by-contrast cell, more than one eigenvalue was significantly
small (indicating several suppressive axes), and in the ON-OFF
cell, both significantly small and large eigenvalues (indicating
excitatory axes) were observed.

Across 28 P-cells tested, 9 showed significantly suppressive
eigenvalues (5 o cells and 4 oFr cells) and 4 showed significantly
excitatory ones (2 oN, 2 ofF; 3 cells showed both excitatory and
suppressive eigenvalues). Among 11 M-cells, all 7 on-cells
showed suppressive eigenvalues, as did 2 of 4 orr-cells; 3 on-cells
and 3 orr-cells showed excitatory eigenvalues. All nine sup-
pressed-by-contrast cells showed suppressive eigenvalues—seven
of these showed more than one significantly suppressive axis,
something not seen in the M-cells—and four had excitatory
eigenvalues. Among four oN-oFF cells, three had significant sup-
pressive and excitatory eigenvalues; one other responded weakly
to the stimulus and showed no clear evidence of either axis. Three
of the four blue-on cells showed suppressive eigenvalues, al-
though only one of the associated eigenvectors showed clear
structure, and the same neuron also showed an excitatory eigen-
value.

Important trends become apparent when considering the
Fourier spectra of the STA and the eigenvectors. The upper
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row of Fig. 4 shows the Fourier spectra of the STA: as
expected, M-cells prefer higher temporal frequencies and P-
cells are more sensitive to lower frequencies; the STA of
suppressed-by-contrast cells is more variable. The bottom row
of Fig. 4 shows that suppressive eigenvectors were also rea-
sonably homogenous within functional classes of LGN cells.
The major suppressive eigenvector found in all M-on cells, all
suppressed-by-contrast cells, and some P-on cells is band-pass
and sensitive to high temporal frequencies. The suppressive
eigenvectors of four P-orr cells were responsive to lower
temporal frequencies and less band-pass; clearly defined sup-
pressive vectors were not found in the four M-orr cells studied.
This suggests that /) nonlinearities in oN- and orr-cells can be
quite different (Chichilnisky and Kalmar 2002) and 2) at least
for P-oN, M-oN, and suppressed-by-contrast cells, the suppres-
sive mechanism has similar characteristics.

Impact of linear and nonlinear mechanisms on spiking
probability

To see the relationship between the projection of the
stimulus on the STA and the probability of generating a
spike, we first calculated the projection of all 50-frame
stimulus sequences in our ensemble onto the STA and
placed these into equally spaced bins. For the same bins, we
also determined the number of stimuli that were associated
with a spike and for each bin we could therefore calculate
the proportion of stimuli that were associated with a spike,
providing an input—output function for the STA. Spike rate
cannot be less than zero, and for most cells, there was a
threshold below which all stimuli were associated with a
lack of discharge. For P- and M-cells, the input—output
function generally grew monotonically with projection on
the STA, and in M-cells particularly, it saturated at large
projection values; the input—output function of the STA in
Fig. 5A shows this for the example M-cell. For oN-oFF cells,
this function was also usually monotonic (Fig. 5D). For
most suppressed-by-contrast cells, the function was not
monotonic (an STA is nevertheless recovered because the
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STA by-contrast
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g
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FIG. 4. Population modulation-transfer functions provided by STA and STC analyses. For each cell, the temporal profiles obtained as in Figs. 2 and 3 were
subject to Fourier analysis. A: each panel shows for each identified class of LGN neuron the modulation transfer function of individual STAs (thin lines) and
the average across cells (open symbols, thick lines). B: same as A, but for the most suppressive eigenvector returned by the STC analysis. Only cells with
significant eigenvectors are shown. Conventions as in A. In A and B, some responses were obtained with a refresh rate of 120 Hz and some were obtained with
a refresh rate of 100 Hz; in each case, the 1st 25 frequencies were used; to plot the average modulation transfer function for each of 25 bins, we computed the

geometric average frequency across cells. Error bars are £SE.
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FIG. 5. Input—output functions for STA and STC analyses. A-D: firing rate
for the example cells is shown as a function of the projection onto 1 vector or
the joint projection onto 2 vectors. In the images, the probability of a spike is
indicated by pixel intensity; the graphs along the diagonal margins show the
average probability for all projections onto 1 of the vectors. For display
purposes, pixels in the joint functions were set to O if they contained <5% of
the number of stimulus projections found in the most populated bin. A: M-cell.
The average discharge rate of the M-cell was 4.9 impulses/s; the mutual
information between the STA and the spike rate was 0.90 bits/spike; for the
most suppressive eigenvector (S1) was 0.18; for the joint function was 1.08.
B: suppressed-by-contrast cell. Average discharge rate: 12.9; STA: 0.22
bits/spike; S1: 0.32; joint: 0.53. C and D: ON-OFF cell. Average discharge rate:
27.6; STA: 0.10 bits/spike; S1: 0.05; E1: 0.48. Joint function for E1 and S1
(C): 0.46 bits/spike. Joint function for STA and El (D): 0.62. E: comparison
of information rates (bits/s) for the STA and that for the STA and all the
significant eigenvectors revealed by STC analysis. Large distances above the
positive diagonal represent cells in which the eigenvectors contributed a
substantial fraction of the information available. Average information rates
when eigenvectors were included: P-cells: w 3.92, SD 2.55; M-cells 7.03, SD
5.72; suppressed-by-contrast cells 5.40, SD 2.80.

center-of-mass of the function is not zero and thus the mean
of the spike-triggered ensemble is not the same as that of the
entire stimulus set).

S. G. SOLOMON, C. TAILBY, S. K. CHEONG, AND A. J. CAMP

We made the same calculations for the significant eigenvec-
tors that were returned by the STC analysis. The nature of this
analysis means that the relationship between the STC and the
discharge rate is always of the same basic shape— excitatory
eigenvectors resemble parabolas and suppressive eigenvalues
inverted parabolas. Figure 5 shows this for the most excitatory
(E1) and suppressive (S1) eigenvectors in the example cells.

This analysis does not tell us how the mechanisms charac-
terized by the eigenvectors interact with each other or with that
characterized by the STA (although the eigenvectors and the
STA are all by definition orthogonal and independent, their
influence on the discharge may not be). We can establish this
relationship with the kinds of joint input—output functions that
are shown in Fig. 5, A-D (Fairhall et al. 2006; Rust et al. 2005;
Schwartz et al. 2006). Each joint function is shown by a
grayscale image, in which the lightness of each pixel corre-
sponds to the probability of a spike, for each pairing of STA
and eigenvector output. In each case, the images resemble what
we would expect if the two mechanisms are independent
(separable), which would be the product of the two marginal
distributions: this was the case for almost all of the pairs of
eigenvectors and pairs of eigenvectors and STA in our sample.

Information provided by linear and nonlinear mechanisms

One way of estimating how much of the discharge is
captured by the STA or the eigenvectors is to calculate the
mutual information between the projection onto the relevant
vector and the probability of a spike (see METHODS). To do this,
we made two probability distributions: one of the projection of
all stimuli onto the STA or eigenvector and one of the projec-
tions that were associated with a spike. The mutual information
between these (Eg. 6) tells us how much the observation of a
spike reduces our uncertainty about the stimulus and therefore
allows comparison of the informativeness of the STA and
eigenvectors; the values for the example cells can be found in
the legend to Fig. 5.

The STA of M-cells provided the most bits/spike, on aver-
age, 0.70 (SD 0.21), which is substantially more than that of
P-cells (n 0.42, SD 0.30; P < 0.05, Students ¢-test), which in
turn gave more than suppressed-by-contrast cells (0.15, SD
0.13). The STA of the on-oFF cells provided intermediate levels
of information, and those of the blue-oN cells (also measured
using achromatic stimuli) approached that of the M-cells.

The information provided by the eigenvectors was distrib-
uted differently. In the three on-orr cells with significant
excitatory eigenvectors, the primary one provided 0.18 (SD
0.26) bits/spike, which was considerably more than that pro-
vided by excitatory eigenvalues in the four P- and six M-cells
(respectively w 0.03, SD 0.02, and w 0.02, SD 0.01). Similarly,
the information provided by the suppressive eigenvectors in the
nine suppressed-by-contrast cells (w 0.15, SD 0.11) was higher
than that in the nine P-cells and nine M-cells (w 0.05, SD 0.06,
and w 0.08, SD 0.05, respectively) or three blue-on cells (w
0.08, SD 0.07). All this suggests that the significant eigenvec-
tors of P- and M-cells are much less informative than the STA
but that in the nonlinear cells they can be just as informative.

We quantified the separability of the joint functions (shown
in Fig. 5, A-D) by calculating the information in them, in the
same way as we did for the STA and eigenvectors above (see
METHODS). If the information in the joint function was greater
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than the sum of the information provided by the individual
functions alone, this would provide evidence for a lack of
independence and the presence of synergistic interactions
(Fairhall et al. 2006). We express the increase in information
provided by the joint input—output function as a percentage of
the information that was provided by the individual vectors
alone: in two of eight suppressed-by-contrast cells, the most
suppressive eigenvector and STA were synergistic (providing
an increase in information of 11 and 53%; the information in
the joint function of the latter neuron was, however, only 0.03
bits); in the three oN-OFF cells with significant eigenvectors, the
most excitatory ones were synergistic with the STA (12, 16,
and 7%). The last of these is shown in Fig. 5D. Across all other
significant eigenvectors, including those in P-, M-, and blue-on
cells, only one provided a synergy fraction of >5%. We
conclude that the mechanisms studied here are largely inde-
pendent and that the information that they provide can be
captured by the sum of the information provided individually.

The eigenvectors were more important in the nonlinear cells
than in P- and M-cells, and in addition, the spike rate of the
nonlinear cells was higher during stimulation with a large field
(During stimulation, the average discharge rates of suppressed-
by-contrast cells and oN-oFF cells, respectively 19.7 and 26.8
impulses-s~' were greater than that of P- and M-cells, respec-
tively, 10.2 and 9.8 impulses-s~'.) The result is that, when the
STA and the eigenvectors were considered together, the infor-
mation rates of each cell class, expressed in bits/s, was similar.
This is shown in Fig. 5E, which compares for each cell the
information captured by the STA and the sum of the informa-
tion from the STA and all the significant eigenvectors. The
STA of the P- and M-cells provides more information, but
these cells lie near the unity line; the suppressed-by-contrast
cells are shifted above it, bringing their information rates close
to those of the P-and M-cells when the eigenvectors are
included.

Impact of the nonlinear mechanisms on the linear ones

Although Fig. 5, A-D, shows that the influence of the STA
and the eigenvectors is largely independent, it does not tell us
how the eigenvectors exert an impact on the output of the linear
receptive field. To examine this, we sorted the entire stimulus
ensemble by the absolute magnitude of their projection onto an
eigenvector, thereby grouping together positive and negative
projections of similar amplitude. We derived six bins that
provided equal numbers of stimuli in each. From the sequences
in these bins, we calculated the discharge rate as a function of
the projection of those sequences on the STA (as in Fig. 5).
This gave us a family of input—output functions for the STA;
each obtained at a relatively constant level of activation of the
selected nonlinear filter, examples of which are seen in Fig. 6,
A-D. In each case, the left panel shows functions for the most
excitatory eigenvector and the right panel shows functions for
the most suppressive eigenvector. For clarity, only two of the
six functions are shown: that obtained for the smallest projec-
tions onto the eigenvector (open symbols) and that obtained for
the largest (filled symbols).

The left panels show that, as expected, only in the oN-OFF
cell does rate depend strongly on the projection of the stimulus
onto the excitatory eigenvector—Ilarger projections onto the
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FIG. 6. Impact of excitatory and suppressive eigenvectors on the output of

the linear receptive field. Same cells as in Figs. 2 and 3. Each panel shows the
relationship between the average discharge rate and projection of the stimulus
on the STA. Left panels compare this relationship for stimuli that had large
projections on the major excitatory axis shown by STC analysis (filled
symbols) and stimuli that had small projections on that axis (open symbols).
Right panels show equivalent functions but for small and large projections on
the most suppressive STC eigenvector. Lines show the best fitting cumulative
normal distribution in each case. Error bars are *=binomial SD.

eigenvector effectively shift the input—output function of the
STA to the left.

The impact of the suppressive eigenvector was most pro-
nounced in the suppressed-by-contrast cell and was less in the
M-cell and on-oFF cell; no effect was observed in the P-cell. In
most cells, the input—output function of the STA, under min-
imal and maximal projections onto the suppressive eigenvec-
tor, seemed to be vertically scaled versions of each other. We
quantified this impression by fitting cumulative normal distri-
butions to the input—output functions, first allowing all param-
eters to vary with projection on the STC eigenvector and then
repeating the fitting procedure but allowing only a vertical
scale factor or a horizontal scale factor to change with projec-
tion (see METHODS). Curves were fit simultaneously to the full
family of six input—output functions, but for clarity, we plot
only the two extremes. In the nine M-cells with significantly
suppressive vectors, allowing only vertical scaling increased
the error between the prediction and the fit to 170% (SD 93) of
that obtained when all parameters were allowed to vary.
Horizontal scaling increased it to 558% (SD 463), which was
significantly greater (P < 0.05, paired Student’s #-test). In nine
P-cells, these were 140 and 260% (SD 39 and 112; P < 0.005),
and in nine suppressed-by-contrast cells, they were 129 and
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1,651% (SD 31 and 840; P < 0.005). Similar results were
obtained for blue-on cells and the excitatory eigenvalue in P-
and M-cells, but in oN-oOFF cells, neither vertical or horizontal
scaling alone adequately described the curves.

Figure 7 uses the vertical scale factors returned by the fitting
procedure to show the impact of the significant suppressive and
excitatory eigenvectors on the visual sensitivity of our population
of LGN cells. This vertical scale factor is the response gain, and
Fig. 7A compares the response gain of the STA for stimuli that
were orthogonal, or nearly so, to the most suppressive eigenvec-
tor, with the response gain of the STA when stimuli were close to
that eigenvector. It is clear that the suppressive eigenvectors in
M-cells and suppressed-by-contrast cells are associated with a
substantial reduction in response gain (and therefore in discharge
rate also), suggesting they are important regulators of the output of
the linear receptive field. Those of most P-cells are less clear,
suggesting that in these cells the suppressive vectors have less
impact on the output of the linear receptive field. Figure 7B shows
a similar plot for the most excitatory eigenvector; except for some
of the on-oFF cells, the significant vectors generally have modest
effect on the linear receptive field.

Impact of stimulus size on responses of P- and M-cells

It is well known that, in M-cells, the shape of the temporal
filter depends on the stimulus, reflecting the spatiotemporal
sensitivity of both the classical linear receptive field and an
(nonlinear) extraclassical receptive field to that stimulus (Be-
nardete and Kaplan 1999; Camp et al. 2009). One way to
manipulate the contribution of the extraclassical field is to
change the size of the stimulus (smaller stimuli should recruit
less of it). If the nonlinear mechanisms shown by the STC
analysis reflect the action of an extraclassical receptive field,
they should be less prevalent when the stimulus is small. We
therefore made measurements of responses to the same se-
quence of flickering fields for small (average 0.75° diam), and
large (4—8°) fields in 21 P-cells (12 oN, 9 orF) and 7 M-cells (3
ON, 4 ofF). The size of the smaller stimulus was our best
estimate of the stimulus that encompassed most of the center
and surround of the classical receptive field, yet minimally
extended beyond it (the remainder of the screen was held at the
mean luminance). We estimated this size using size-tuning
curves obtained for both modulated fields and drifting gratings.
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fields. Same M-cell as Figs. 2, 3, 5, and 6. Measurements were made during
stimulation with the same temporal sequence, confined to a small uniform field
(diameter 1°) or a large field (diameter 4°). The remainder of the screen was
held at the mean luminance. A: temporal profile of the STA. Error bars are
*SE. Same format as Fig. 2. B: input—output functions for the STAs shown in
A. Error bars are *=binomial SD. C: temporal profile of the suppressive eigenvec-
tors. One significant eigenvector was found during stimulation with a small field,
and 1 was found during stimulation with a large field. D: input—output function for
the STA for small and large projections on the most suppressive STC eigenvector
obtained in small fields. The impact of the eigenvector is to change the slope
(sensitivity) of the STA. Equivalent functions for the large field can be found in
Fig. 6B. Error bars are *=binomial SD.

The dashed lines in Fig. 8, A and B, show the STA and its
input-output function for the example M-on cell, obtained
using small fields; for comparison, the solid lines show those
obtained with a large field. The STA is slightly broader in
small fields, which probably reflects reduced action of a con-
trast gain control and reduced antagonism from the classical
(linear) receptive field surround (Benardete and Kaplan 1999).
The relationship between STA activation and spike rate is
nevertheless similar up to a vertical scale factor.

Changing the size of the stimulus changed the discharge of
cells during the flickering field: in the 7 M-cells, confining the
stimulus to a smaller field increased the overall firing rate
[from 5.5 (SD 3.1) in a large field to 21.7 (SD 7.2) impulses/s
in a small field; P < 0.001, paired Student’s #-test]; in the 21
P-cells, these were 9.4 (SD 4.6) and 11.8 (SD 5.6) impulses/s
(P = 0.08). Furthermore, for both P- and M-cells, the infor-
mation rate of the STA (bits/spike) increased when using small
fields: in P-cells by 49% (from 0.41, SD 0.31 to 0.61, SD 0.50;
P < 0.01) and in M-cells by 68% (from 0.77, SD 0.23 to 1.29,
SD 0.17; P < 0.01). Because changing the size of the stimulus
changed the discharge rate and the information per spike, the
total information rate of the STA was a good deal larger in
small fields: for M-cells, it increased from 4.1 to 27.1 bits/s; for
P-cells, it increased from 3.2 to 7.8.
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Accordingly, the STC analysis of responses to small fields
produced somewhat different results to that obtained for large
fields. Among the 21 P-cells tested with both, the STC showed
significant eigenvalues in two cells when using small fields and
in seven when using large fields. Among each of the three
M-oN cells tested with small fields, we found significant
suppressive axes, but these were very different to those found
with large fields—for small sizes, the eigenvectors were
broader and relatively more sensitive to lower frequencies (an
example is shown in Fig. 8C); in the four M-oFr cells, the
excitatory eigenvalues became more prominent when small
fields were used (data not shown).

The way in which the eigenvectors of M-cells interacted
with the STA also changed with stimulus size. Figure 8D
shows, separately for stimuli with weak (open symbols) and
strong (closed symbols) projections onto the suppressive eig-
envector, the input—output function of the example cell ob-
tained using small fields. For a small field, the change in the
input—output function that the STC brings about is better
described as scaling of the horizontal axis than as a scaling of
the vertical axis: in other words, stimuli that have large pro-
jections onto the suppressive eigenvector change the slope of
the input—output function but not its maximal rate. This is quite
different to the impact of the suppressive eigenvector during
stimulation with a large field, which is shown in the right panel
of Fig. 6B. In seven M-cells, we obtained responses with both
sizes: in four cells the small fields yielded significantly sup-
pressive eigenvectors, and in these, the predictions of the
horizontal scale model were always better than that of the
vertical scale model [increasing the error in the fit to 124% (SD
18) vs. 186% (SD 66)]; in the same cells for large fields, the
predictions of the horizontal scale model were always worse
than those of the vertical scale model [481%, (SD 528) vs.
145% (SD 49)]. In summary, suppressive eigenvectors found
during stimulation with large fields have a large impact on the
response gain of the linear receptive field, whereas those found
during stimulation with small fields have more of an impact on
its sensitivity.

Reconstruction of stimulus luminance and energy

The characteristic receptive field properties of the very
nonlinear cells make it unlikely that their signals are useful for
reconstructing the spatial position or luminance polarity (in-
crement, decrement) of the local image. It is more likely that
they represent the presence or absence of spatiotemporal con-
trast. Such an early representation of contrast energy would be
complementary to that of the largely linear receptive fields of
P- and M-cells, where a lack of change in spike rate might
represent either the presence of a gray field or any other pattern
that is orthogonal to the receptive field of the cell. The analyses
above show that there is information about contrast energy in
the signals of the very nonlinear cells, but we do not know if
these signals can be decoded by later processing. The simplest
decoder is a linear one, and in the following, we use a
well-established method of linear decoding (Bialek et al. 1991;
Pillow et al. 2008; Warland et al. 1997) to quantify the
information it can provide. Although the linear decoder does
not allow for nonlinearities in retinal or LGN processing, it
does allow us to place a lower bound on the information that
might be extracted by later processing.
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We used the spikes obtained during presentation of the
flickering field to train the decoder, so that it learned the filter
that best predicted the stimulus, given the train of spikes (it
minimized the square error between the actual and predicted
sequences). We assessed the performance of this decoder by
trying to predict a separate sequence of frames on the basis of
the sequence of spikes elicited by those frames.

Cells early in the visual pathway can provide substantially
accurate reconstructions of the temporal profile of flickering
fields like those we have used (see, e.g., Bialek et al. 1991;
Passaglia and Troy 2004; Pillow et al. 2008; Warland et al.
1997). The top panels in Fig. 9, A and B, show a small segment
of reconstruction obtained from one P-on cell and one M-oN
cell in response to a small flickering field. The gray line shows
the luminance profile of the stimulus; the thicker black line
shows the reconstruction of this stimulus sequence from the
trained decoder. The reconstruction does not always faithfully
track the actual stimulus, especially during periods of very
slow or very rapid flicker, but there is obvious congruence
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between the two sequences. Figure 9, C and D, shows for the
same cells, the reconstruction during flicker of the same tem-
poral sequence presented within a larger field. The discharge
rate is lower, and the reconstruction is considerably worse.

The top panels in Figs 9, E and F, show luminance recon-
structions obtained from one suppressed-by-contrast cell and
one oN-OFF cell. The reconstructions less clearly track the
stimulus, as expected given that the algorithm is trying to
reconstruct the luminance of the stimulus, and we know that
the cell responds in a similar way to both increments and
decrements. We therefore also examined the quality of recon-
structions obtained by squaring the stimulus before training the
decoder. The signals of the nonlinear cells were much more
useful in decoding this contrast energy; this is clear in the
bottom panels in Fig. 9, E, and F, where the reconstruction
tracks the stimulus. In this task, the signals of the P- and
M-cells (Fig. 9, A-D, bottom panels) were less useful, which is
not surprising because they respond quite differently to lumi-
nance increments and decrements that nevertheless have the
same energy.

Quality of reconstructions for luminance and energy

To quantify the correlation between the actual stimulus and
its reconstruction we expressed the difference between them as
the signal-to-noise ratio at each temporal frequency (Warland
et al. 1997) (see METHODS). Figure 10A shows this analysis for
the luminance reconstructions obtained for large fields. As
expected from the shape of their STA, over the population,
P-cells gave generally better reconstructions at low frequencies
and M-cells gave better reconstructions at high frequencies.
The on-oFF cell and the suppressed-by-contrast cell performed
poorly at low frequencies but at high frequencies matched the
performance of P- and M-cells. Figure 10B shows equivalent
plots for the same cells but for reconstructions of the stimulus
energy. Those provided by the P-cell and M-cell were poor; the
reconstructions provided by the oN-oFF cell and suppressed-by-
contrast cell were much better.

The integral of the signal-to-noise ratio across a linear scale
of temporal frequency is an estimate of the mutual information
between the reconstruction and the actual stimulus. These
information rates (in bits/s) are plotted in Fig. 10C, which
compares for each cell the information provided about lumi-
nance with that provided about energy. For P- and M-cells, the
information rates for energy are much less than those about
luminance. This is not the case for the on-orf cells and
particularly for the suppressed-by-contrast cells, both of which
provide similar information rates for energy and luminance. As
is expected from the reconstructions in Fig. 9, the decoder
recovered more information about luminance from P- and
M-cells when small sizes were used (data not shown). For
P-cells, the average information increased from 1.30 bits/s (SD
0.94) in large sizes to 3.19 in small (SD 3.35, n = 21; P <
0.01, paired Students #-test); for M-cells, the impact of size was
more pronounced, increasing the information rate from 1.51
(SD 0.81) to 9.77 (SD 2.42, n = 7; P < 0.0001).

To characterize the temporal resolution of the reconstruc-
tions, we found the point on the high temporal frequency limb
at which the reconstruction had fallen to one half its maximal
signal-to-noise ratio (Fig. 10D). For luminance modulations,
P-cells resolved on average slightly lower frequencies than
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temporal frequency. B: same as A, but for reconstructions of energy.
C: comparison of mutual information rates (in bits/s) provided by individual
cells for luminance and energy. Information rates were determined as one half
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luminance: P-cells: w 1.52, SD 1.11; M-cells 2.66, SD 2.98; suppressed-by-
contrast cells 1.02, SD 0.61. Average information rates for energy: P-cells: w
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0.72. D: temporal frequency at which the high-frequency limb of the logSNR
curves declined to one half the maximal logSNR for luminance (fop) and
energy (bottom).

M-cells (averaging 24.8 and 28.8, respectively; P < 0.05,
Student’s z-test), but the difference was small. We found no
difference between oN and oFr cells of each class. Where we
could characterize them, the nonlinear cells were not distin-
guished from P- and M-cells on the basis of frequency reso-
Iution of luminance reconstructions. The energy reconstruc-
tions of oN-oFf and suppressed-by-contrast cells were strong
over much lower temporal frequencies (resolving at 12.8 and
10.6 Hz, respectively) than the luminance reconstructions pro-
vided by P- and M-cells.

In summary, Figs. 9 and 10 confirm that a linear decoder can
recover information about the field’s luminance from P- and
M-cells. The same decoder can capture substantial information
about its contrast energy from oN-orfF and suppressed-by-
contrast cells.

DISCUSSION

Nonlinear mechanisms in P- and M-cells

The receptive fields of P-cells are well characterized by a
linear model (Benardete and Kaplan 1997a, b; Benardete et al.
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1992). The analysis of covariance here shows that some P-cells
nevertheless require additional nonlinearities, particularly sup-
pressive ones, and that when present the suppressive mecha-
nisms of P-on and P-orF cells differ in temporal sensitivity
(Fig. 4).

The receptive fields of most M-cells exhibited stronger
nonlinearities, and the mechanisms of suppression differed
between M-oN and M-oFr cells, providing further evidence for
functional asymmetries between the on- and oFr-pathways
(Chichilnisky and Kalmar 2002; Zaghloul et al. 2003). We note
that the temporal structure along many of these suppressive
axes resembled the STA, shifted in time. That they resemble
the STA is not surprising, because nearly all retinal ganglion
cells show biphasic impulse response functions (see Fig. 4), but
it might also suggest that the suppressive axes simply reflect
non-Poisson properties of neurons, such as burst responses or
a refractory period, which causes a brief reduction in discharge
rate after each spike (Aguera y Arcas and Fairhall 2003;
Fairhall et al. 2006; Pillow and Simoncelli 2003) We think that
this cannot provide a complete explanation for the suppressive
axes, because reducing the size of the stimulus led to an
increase in the average discharge rate in both P- and M-cells
but did not increase the number of cells showing suppressive
axes or the number of suppressive axes in cells.

During stimulation with small fields, the influence of the
suppressive mechanisms on the output of the STA could
be reasonably described by a change in the sensitivity of the
output of the STA, the impact that is expected of a contrast
gain control (Chander and Chichilnisky 2001; Shapley and
Victor 1979). In large fields, the major effect of the suppressive
mechanisms was instead to divide the evoked discharge rate by
a constant. This is consistent with previous work in marmoset
LGN, which shows that stimuli placed in a region around the
classical receptive field will bring about a reduction in response
gain (Camp et al. 2009; Felisberti and Derrington 2001; So-
lomon et al. 2002; Webb et al. 2002). The mechanism that
gives rise to the sensitivity reduction that is evident during
stimulation with small fields is thus either unresponsive in
large fields or its functional signature is overwhelmed by the
reduction in response gain; regardless, it is clear that under
most visual conditions, responsivity is modulated by multiple
suppressive mechanisms with different functional characteris-
tics (Camp et al. 2009; Zaghloul et al. 2007).

Because response includes the discharge generated over all
projections onto the STA, large fields reduced the discharge
rate of M-cells even when there was no drive to the linear
receptive field. We therefore expect that the maintained dis-
charge rate can be reduced by peripheral stimulation even when
there is no effective stimulus over the classical receptive field.
This effect has been observed in previous studies of retina and
LGN: stimulation with remote, contrast reversing patterns reduces
the maintained discharge of M-cells (Dhruv et al. 2009; Solomon
et al. 2006). Although many studies suggest a retinal origin for
some of the suppressive effect, we note that the STC analysis
reported here might reflect mechanisms that arise within the LGN
(Dhruv et al. 2009; Hubel and Wiesel 1966; Levick et al. 1972;
Murphy and Sillito 1987; Webb et al. 2002). We did not make
recordings from retinal afferents, so we do not know which
components are already established in the retina (Benardete and
Kaplan 1999; Enroth-Cugell and Jakiela 1980; Passaglia et al.
2001, 2009; Sincich et al. 2009; Solomon et al. 2006). Recent
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work in macaque, in which retinal afferents and their LGN
targets were recorded simultaneously, may help (Sincich et al.
2009). In both P- and M-cells, mechanisms much like those
shown by the STC analyses here were already apparent in the
retinal signals: the primary transformation of visual signals in
LGN was conferred by the temporal summation of retinal
afferent spikes. However, that work explored activity during
temporal modulation of a small spot confined to the classical
receptive field, which is unlikely to engage strong suppressive
mechanisms in LGN, and therefore we do not know if process-
ing within LGN provides additional mechanisms.

Nonlinear mechanisms in uncommon receptive fields

Suppressed-by-contrast cells and oN-oFF cells have receptive
fields that are by definition very nonlinear, and these nonlin-
earities seem to have been captured by the STC analysis.
Suppressed-by-contrast cells in particular showed strong sup-
pressive eigenvectors, whereas oN-OfFF cells usually had the
most complicated of the receptive fields we studied, displaying
both strong excitatory and suppressive eigenvectors. Unfortu-
nately, although STC analysis recovers a representation of the
spike-triggered stimulus ensemble using a set of orthogonal
filters, these eigenvectors are not guaranteed to be the fun-
damental axes of that subspace. Because of this, it is not
straightforward to relate the profile of the eigenvectors to
the underlying neural machinery (Rust et al. 2005; Schwartz
et al. 2006).

Suppressed-by-contrast cells are known to exist in the retina
(Cleland and Levick 1974; Rodieck 1967; Tailby et al. 2007),
so it is likely that the STC analyses show mechanisms in place
there. Similarly, the mechanisms that provide the excitatory
eigenvalues in on-oFf cells may be those that confer the
“Y-like” frequency-doubled responses that have been exten-
sively studied in cat retina (Enroth-Cugell and Robson 1966;
Hochstein and Shapley 1976), as well as similar cell types in
the retina of salamanders (Fairhall et al. 2006), guinea pig
(Demb et al. 1999), and primates (Crook et al. 2008a, b;
Petrusca et al. 2007). Where studied, the nonlinear responses of
these cell types are thought to reflect rectification at the bipolar
cell synapse (Demb et al. 2001). Figure 4 shows that, in ON-OFF
cells, the excitatory eigenvectors are sensitive to very high
temporal frequencies, consistent with the idea that the nonlin-
earity is early in visual processing.

The presence of an STA in suppressed-by-contrast cells was
surprising, because there are few indications of stimuli that
increase the discharge rate above that for a blank screen
(Rodieck 1967; Tailby et al. 2007). As with the suppressive
axes, the STA was usually quite transient, and the input—output
function often nonmonotonic; if suppression arises in half-
wave rectified mechanisms sensitive to increments or decre-
ments, the STA may reflect an imbalance in the strength of
these mechanisms.

Functional characteristics of parallel pathways through the
LGN

We used achromatic stimuli to characterize the linear and
nonlinear mechanisms in all classes of LGN cells. For step
changes in achromatic contrast, the dominant mode of
response for suppressed-by-contrast cells was a transient

J Neurophysiol « VOL 104 « OCTOBER 2010 « WWW.jn.org

Downloaded from www.physiology.org/journal/jn by ${ individual User.givenNames} ${individual User.surname} (086.185.251.047) on May 19, 2018.
Copyright © 2010 American Physiological Society. All rights reserved.



1896

suppression of the discharge at each change in contrast (see
examples in Figs. 1B and 11). However, many of the
suppressed-by-contrast cells responded in a strikingly dif-
ferent way when the step changes in contrast were largely
restricted to one class of cone photoreceptor. Figure 11
shows the response of a representative suppressed-by-con-
trast cell: the discharge rate was low during the entire
oN-phase of S cone modulation but not the orr-phase. Strong
transient suppression at both phases of LM cone modulation
was accompanied by a sustained reduction in rate during the
ofr-phase. We saw the same patterns during cone-isolating
modulation in seven of the eight suppressed-by-contrast
cells tested. For the cell in Fig. 11, the responses during
achromatic modulation were reasonably well described by
simply summing the two cone-isolating responses but that
was not always the case. This suggests that the suppressed-
by-contrast cell gets sustained input from a half-wave rec-
tified “+S-LM” cone-opponent mechanism. An additional
transient suppression must arise in other mechanisms that
are dominated by LM cone input. We do not know if this
convergence arises in the retina or thalamus.

The response of the suppressed-by-contrast cell during
achromatic modulation is different to that of blue-on or
blue-oFF cells that we have encountered previously, where
achromatic and cone-isolating modulation bring about
changes in discharge that are reasonably symmetric around
the maintained rate (Tailby et al. 2008a). In LGN, both
blue-oN cells and blue-ofF cells (much like P- and M-cells)
can be suppressed by achromatic stimuli presented in re-
gions outside the classical receptive field (Solomon et al.
2002; Tailby et al. 2008b); we may therefore expect to find
the kinds of eigenvectors that are expressed in the P- and
M-cells in blue-on and blue-oFr cells also. In one of the four
blue-on cells encountered here, the suppressive filters were
as strong and transient as those in M-cells or suppressed-
by-contrast cells; however, the responses of this cell to step
contrast changes showed no signs of transient suppression.
In three of the on-orfF cells, we saw transient excitatory
responses to both phases of S cone modulation, similar in
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FIG. 11.  Cone inputs to a suppressed-by-contrast cell. Same cell as Fig. 1B.

Each panel shows the average PSTH accumulated during square-wave tempo-
ral modulation of a large uniform field. A: response to achromatic modulation
(dashed line shows the maintained discharge): activity is transiently suppressed
at steps to white or black. B: response to modulations substantially restricted
to the S-cone or to the LM-cone. LM-cone modulation induces transient
suppression at both phases and a sustained suppression during the OFF phase.
S-cone modulation leads to a reduction in the discharge during the ON phase.
Error bars are =SE.
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shape but much smaller than the response to achromatic
modulation (we cannot exclude the possibility that this may
simply reflect residual LM cone modulation).

It is often thought that because the sampling density of S
cones is too low to support high acuity spatial vision, S cone
input to a receptive field is indicative of a role in color vision.
It is not yet clear to us if the functional diversity shown above
is best characterized by multiple subclasses of blue-on and
blue-oFr cells or by diversity in the expression of S cone input
to the receptive fields of the nonlinear cells. We favor the
latter: whereas the functional properties of the very nonlinear
cells do not rule out a role in color vision, such a role would
require reconciling their very nonlinear responses with those of
more linear cells, particularly in trichromats where their signals
need to be combined with those of red-green opponent cells in
the P-pathway. However, an alternative functional role for the
substantial input from S cones remains unclear; whatever the
role, we suspect it may point to an early evolutionary origin of
S cones pathways (Mollon 1989) and the very nonlinear
pathways, both of which are found in primates and other
mammals.

Linear decoding of stimulus features

A simple linear decoder was able to reconstruct the time
course of either luminance or contrast energy by selectively
drawing on the spikes of different cell classes. oN-oFF and
suppressed-by-contrast cells provide information about con-
trast energy that is comparable to the information that P- and
M-cells provide about luminance. These information estimates
are lower bounds. We expect more information could be
recovered from the spike trains of all cell classes by decoders
that worked with more complicated combination rules, consid-
ered simultaneously recorded spike trains from neighboring
cells, and took into account higher-level features of the spike
train (Lundstrom and Fairhall 2006; Passaglia and Troy 2004;
Pillow et al. 2008). Nevertheless, our analysis shows that even
with the simplest decoder, the cortex may have access to a
reasonably high-fidelity representation of contrast energy as
well as luminance; this might be a more efficient strategy than
superimposing the two signals onto the spike trains of a single
pathway (Balasubramanian and Sterling 2009). We speculate
that such an early code for contrast energy might be useful in
initiating coarse bottom-up maps for salience (Itti et al. 1998)
or in providing a neural measure of contrast energy against
which the responses of other cells can be referenced (Heeger
1992; Tailby et al. 2007; Troy et al. 1989). The distinctiveness
of these reconstructions of contrast energy might help distin-
guish their contributions to subsequent processing or behav-
ior—signals were robust at temporal frequencies up to ~15
Hz, which is much lower than the frequencies to which the
luminance reconstructions of P- and M-cells extended.
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